{"title":"GaussianAvatar: Human avatar Gaussian splatting from monocular videos","authors":"Haian Lin, Yinwei Zhan","doi":"10.1016/j.cag.2024.104155","DOIUrl":null,"url":null,"abstract":"<div><div>Many application fields including virtual reality and movie production demand reconstructing high-quality digital human avatars from monocular videos and real-time rendering. However, existing neural radiance field (NeRF)-based methods are costly to train and render. In this paper, we propose GaussianAvatar, a novel framework that extends 3D Gaussian to dynamic human scenes, enabling fast training and real-time rendering. The human 3D Gaussian in canonical space is initialized and transformed to posed space using Linear Blend Skinning (LBS), based on pose parameters, to learn the fine details of the human body at a very small computational cost. We design a pose parameter refinement module and a LBS weight optimization module to increase the accuracy of the pose parameter detection in the real dataset and introduce multi-resolution hash coding to accelerate the training speed. Experimental results demonstrate that our method outperforms existing methods in terms of training time, rendering speed, and reconstruction quality.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"126 ","pages":"Article 104155"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002905","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Many application fields including virtual reality and movie production demand reconstructing high-quality digital human avatars from monocular videos and real-time rendering. However, existing neural radiance field (NeRF)-based methods are costly to train and render. In this paper, we propose GaussianAvatar, a novel framework that extends 3D Gaussian to dynamic human scenes, enabling fast training and real-time rendering. The human 3D Gaussian in canonical space is initialized and transformed to posed space using Linear Blend Skinning (LBS), based on pose parameters, to learn the fine details of the human body at a very small computational cost. We design a pose parameter refinement module and a LBS weight optimization module to increase the accuracy of the pose parameter detection in the real dataset and introduce multi-resolution hash coding to accelerate the training speed. Experimental results demonstrate that our method outperforms existing methods in terms of training time, rendering speed, and reconstruction quality.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.