Hygroscopic sterilization synergistic effect of UiO-66-NH2@Potassium polyacrylate/carbon fiber negative ions electrode

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Tianyuan Hou , Shougang Chen , Qingfeng Bie , Weili Dong , Jianhua Liu , Bo Wen , Jiang Zhang , Yuqing Ye , Liting Dong , Xiao Sun , Xuechen Xu
{"title":"Hygroscopic sterilization synergistic effect of UiO-66-NH2@Potassium polyacrylate/carbon fiber negative ions electrode","authors":"Tianyuan Hou ,&nbsp;Shougang Chen ,&nbsp;Qingfeng Bie ,&nbsp;Weili Dong ,&nbsp;Jianhua Liu ,&nbsp;Bo Wen ,&nbsp;Jiang Zhang ,&nbsp;Yuqing Ye ,&nbsp;Liting Dong ,&nbsp;Xiao Sun ,&nbsp;Xuechen Xu","doi":"10.1016/j.mtsust.2024.101055","DOIUrl":null,"url":null,"abstract":"<div><div>Indoor air pollution is a major challenge faced by mankind. and tiny negative ions are one of the ideal answers to the problem of indoor air pollution. This method to purify indoor air has received increasing attention in recent years. In this work, a design method of potassium polyacrylate/carbon fiber (UN-PK-CF) composite unidirectional negative ions generating electrode which modified by UiO-66-NH<sub>2</sub> is presented. UiO-66-NH<sub>2</sub> particles are uniformly dispersed within the potassium polyacrylate (PK) hydrogel matrix, facilitating efficient moisture absorption. The natural pores formed during the PK hydrogel curing process effectively store the absorbed water and buffer the release of water in low humidity. One-dimensional carbon fibers, arranged as a skeleton within the hydrogel medium, facilitate rapid charge transfer and discharge from tip to generate negative ions and ROS. The UN-PK-CF electrode developed in this study exhibits outstanding moisture resistance and possesses the capability to harvest and utilize environmental water. Especially under the condition of low humidity, the sterilization rate of the electrode can reach nearly 99% under the coordination of adsorbed water.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101055"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003919","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor air pollution is a major challenge faced by mankind. and tiny negative ions are one of the ideal answers to the problem of indoor air pollution. This method to purify indoor air has received increasing attention in recent years. In this work, a design method of potassium polyacrylate/carbon fiber (UN-PK-CF) composite unidirectional negative ions generating electrode which modified by UiO-66-NH2 is presented. UiO-66-NH2 particles are uniformly dispersed within the potassium polyacrylate (PK) hydrogel matrix, facilitating efficient moisture absorption. The natural pores formed during the PK hydrogel curing process effectively store the absorbed water and buffer the release of water in low humidity. One-dimensional carbon fibers, arranged as a skeleton within the hydrogel medium, facilitate rapid charge transfer and discharge from tip to generate negative ions and ROS. The UN-PK-CF electrode developed in this study exhibits outstanding moisture resistance and possesses the capability to harvest and utilize environmental water. Especially under the condition of low humidity, the sterilization rate of the electrode can reach nearly 99% under the coordination of adsorbed water.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信