Functional poly(ether-ketone-ketone) composite scaffold with enhanced cell-material interaction, anti-inflammatory and osteogenesis for facilitating osteointegration and bone regeneration

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Qianwen Yang, Anbei Chen, Xin Zhang, Zhaoying Wu, Chao Zhang
{"title":"Functional poly(ether-ketone-ketone) composite scaffold with enhanced cell-material interaction, anti-inflammatory and osteogenesis for facilitating osteointegration and bone regeneration","authors":"Qianwen Yang,&nbsp;Anbei Chen,&nbsp;Xin Zhang,&nbsp;Zhaoying Wu,&nbsp;Chao Zhang","doi":"10.1016/j.mtbio.2025.101533","DOIUrl":null,"url":null,"abstract":"<div><div>Bone defects resulting from trauma or disease remain a significant challenge in clinical practice, often requiring prolonged treatment. Poly(ether-ketone-ketone) (PEKK) is a commonly used implant material due to its excellent biocompatibility and mechanical properties, which are similar to those of bone. However, its biological inertness leads to poor anti-inflammatory and osteointegration properties, significantly hindering the bone repair process. In this study, a cryogel filled - PEKK/bioglass (BG) composite scaffold (SPBC) was prepared <em>via</em> 3D printing to provide immunomodulatory and bone integration performance. Compared with untreated PEKK, SPBC exhibited significant enhancements in surface properties, including higher hydrophilicity and roughness. Additionally, SPBC enhanced the adsorption of fibronectin and vitronectin on the scaffold surface and regulated the maturation of cytoskeleton and adhesion plaques by increasing the phosphorylation level of FAK at Y397, thereby promoting cell adhesion and spreading. Due to the release of bioactive ions, SPBC can significantly promote the polarization of RAW264.7 cells towards M2 and the secretion of anti-inflammatory cytokines, while also enhancing the proliferation and differentiation of rat mesenchymal stem cells (rMSCs) <em>in vitro</em>. Furthermore, the <em>in vivo</em> results confirmed the enhanced anti-inflammatory properties and the integration of SPBC with the host tissue. In summary, after surface modification and cryogel filling, SPBC demonstrated excellent anti-inflammatory and bone integration abilities, presenting potential for clinical application as an orthopedic implant scaffold.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101533"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425000912","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone defects resulting from trauma or disease remain a significant challenge in clinical practice, often requiring prolonged treatment. Poly(ether-ketone-ketone) (PEKK) is a commonly used implant material due to its excellent biocompatibility and mechanical properties, which are similar to those of bone. However, its biological inertness leads to poor anti-inflammatory and osteointegration properties, significantly hindering the bone repair process. In this study, a cryogel filled - PEKK/bioglass (BG) composite scaffold (SPBC) was prepared via 3D printing to provide immunomodulatory and bone integration performance. Compared with untreated PEKK, SPBC exhibited significant enhancements in surface properties, including higher hydrophilicity and roughness. Additionally, SPBC enhanced the adsorption of fibronectin and vitronectin on the scaffold surface and regulated the maturation of cytoskeleton and adhesion plaques by increasing the phosphorylation level of FAK at Y397, thereby promoting cell adhesion and spreading. Due to the release of bioactive ions, SPBC can significantly promote the polarization of RAW264.7 cells towards M2 and the secretion of anti-inflammatory cytokines, while also enhancing the proliferation and differentiation of rat mesenchymal stem cells (rMSCs) in vitro. Furthermore, the in vivo results confirmed the enhanced anti-inflammatory properties and the integration of SPBC with the host tissue. In summary, after surface modification and cryogel filling, SPBC demonstrated excellent anti-inflammatory and bone integration abilities, presenting potential for clinical application as an orthopedic implant scaffold.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信