Log Floer cohomology for oriented log symplectic surfaces

IF 1.6 3区 数学 Q1 MATHEMATICS
Charlotte Kirchhoff-Lukat
{"title":"Log Floer cohomology for oriented log symplectic surfaces","authors":"Charlotte Kirchhoff-Lukat","doi":"10.1016/j.geomphys.2024.105412","DOIUrl":null,"url":null,"abstract":"<div><div>This article provides the first extension of Lagrangian Intersection Floer cohomology to Poisson structures which are almost everywhere symplectic, but degenerate on a lower-dimensional submanifold. The main result of the article is the definition of Lagrangian intersection Floer cohomology, referred to as log Floer cohomology, for orientable surfaces equipped with log symplectic structures. We show that this cohomology is invariant under suitable isotopies and that it is isomorphic to the log de Rham cohomology when computed for a single Lagrangian.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"209 ","pages":"Article 105412"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024003139","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides the first extension of Lagrangian Intersection Floer cohomology to Poisson structures which are almost everywhere symplectic, but degenerate on a lower-dimensional submanifold. The main result of the article is the definition of Lagrangian intersection Floer cohomology, referred to as log Floer cohomology, for orientable surfaces equipped with log symplectic structures. We show that this cohomology is invariant under suitable isotopies and that it is isomorphic to the log de Rham cohomology when computed for a single Lagrangian.
有向对数辛曲面的Log flower上同调
本文首次将拉格朗日交花上同调推广到几乎处处辛但在低维子流形上退化的泊松结构。本文的主要成果是定义了具有对数辛结构的可定向曲面的拉格朗日交花上同调,简称对数花上同调。我们证明了这种上同调在合适的同位素下是不变的,并且当计算单个拉格朗日时,它与log de Rham上同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信