Geometric formula for 2d Ising zeros: Examples & numerics

IF 1.6 3区 数学 Q1 MATHEMATICS
Iñaki Garay , Etera R. Livine
{"title":"Geometric formula for 2d Ising zeros: Examples & numerics","authors":"Iñaki Garay ,&nbsp;Etera R. Livine","doi":"10.1016/j.geomphys.2024.105406","DOIUrl":null,"url":null,"abstract":"<div><div>A geometric formula for the zeros of the partition function of the inhomogeneous 2d Ising model was recently proposed in terms of the angles of 2d triangulations embedded in the flat 3d space. Here we proceed to an analytical check of this formula on the cubic graph, dual to a double pyramid, and provide a thorough numerical check by generating random 2d planar triangulations. Our method is to generate Delaunay triangulations of the 2-sphere then performing random local rescalings. For every 2d triangulations, we compute the corresponding Ising couplings from the triangle angles and the dihedral angles, and check directly that the Ising partition function vanishes for these couplings (and grows in modulus in their neighborhood). In particular, we lift an ambiguity of the original formula on the sign of the dihedral angles and establish a convention in terms of convexity/concavity. Finally, we extend our numerical analysis to 2d toroidal triangulations and show that the geometric formula does not work and will need to be generalized, as originally expected, in order to accommodate for non-trivial topologies.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"209 ","pages":"Article 105406"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024003073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A geometric formula for the zeros of the partition function of the inhomogeneous 2d Ising model was recently proposed in terms of the angles of 2d triangulations embedded in the flat 3d space. Here we proceed to an analytical check of this formula on the cubic graph, dual to a double pyramid, and provide a thorough numerical check by generating random 2d planar triangulations. Our method is to generate Delaunay triangulations of the 2-sphere then performing random local rescalings. For every 2d triangulations, we compute the corresponding Ising couplings from the triangle angles and the dihedral angles, and check directly that the Ising partition function vanishes for these couplings (and grows in modulus in their neighborhood). In particular, we lift an ambiguity of the original formula on the sign of the dihedral angles and establish a convention in terms of convexity/concavity. Finally, we extend our numerical analysis to 2d toroidal triangulations and show that the geometric formula does not work and will need to be generalized, as originally expected, in order to accommodate for non-trivial topologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信