An algorithm for dynamic obstacle avoidance applied to UAVs

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Julian Rascon Enriquez , Bernardino Castillo-Toledo , Stefano Di Gennaro , Luis Arturo García-Delgado
{"title":"An algorithm for dynamic obstacle avoidance applied to UAVs","authors":"Julian Rascon Enriquez ,&nbsp;Bernardino Castillo-Toledo ,&nbsp;Stefano Di Gennaro ,&nbsp;Luis Arturo García-Delgado","doi":"10.1016/j.robot.2024.104907","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on developing a navigation method for mobile robots to effectively avoid moving obstacles while accurately tracking a desired path. The approach introduces an enhanced velocity field that incorporates hydrodynamic theory tools. Initially designed for the 2D case, the method is subsequently extended to the 3D scenario by introducing vector field extensions and rotations.</div><div>To validate the proposed scheme, experiments are conducted using a UAV model tasked with tracking a circular contour. The control system employs two PD controllers for regulating the vertical position (<span><math><mi>z</mi></math></span>) and yaw angle (<span><math><mi>ψ</mi></math></span>), while the roll (<span><math><mi>ϕ</mi></math></span>) and pitch (<span><math><mi>θ</mi></math></span>) angles are controlled using a nested saturation method.</div><div>The numerical results demonstrate the successful achievement of the tracking objective, even when a moving obstacle crosses the reference path. Notably, this study considers the scenario where an obstacle approaches the vehicle from behind, which is often overlooked in similar investigations. This aspect is examined in both the 2D and 3D cases.</div><div>Subsequently, the proposed navigation method is tested on a quadrotor vehicle, yielding favorable results.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"186 ","pages":"Article 104907"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002914","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on developing a navigation method for mobile robots to effectively avoid moving obstacles while accurately tracking a desired path. The approach introduces an enhanced velocity field that incorporates hydrodynamic theory tools. Initially designed for the 2D case, the method is subsequently extended to the 3D scenario by introducing vector field extensions and rotations.
To validate the proposed scheme, experiments are conducted using a UAV model tasked with tracking a circular contour. The control system employs two PD controllers for regulating the vertical position (z) and yaw angle (ψ), while the roll (ϕ) and pitch (θ) angles are controlled using a nested saturation method.
The numerical results demonstrate the successful achievement of the tracking objective, even when a moving obstacle crosses the reference path. Notably, this study considers the scenario where an obstacle approaches the vehicle from behind, which is often overlooked in similar investigations. This aspect is examined in both the 2D and 3D cases.
Subsequently, the proposed navigation method is tested on a quadrotor vehicle, yielding favorable results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信