Diagnostic analysis and performance optimization of scalable computing systems in the context of industry 4.0

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
John William Vásquez Capacho , G. Pérez-Zuñiga , L. Rodriguez-Urrego
{"title":"Diagnostic analysis and performance optimization of scalable computing systems in the context of industry 4.0","authors":"John William Vásquez Capacho ,&nbsp;G. Pérez-Zuñiga ,&nbsp;L. Rodriguez-Urrego","doi":"10.1016/j.suscom.2024.101067","DOIUrl":null,"url":null,"abstract":"<div><div>Escalating energy costs and sustainability concerns in high-performance computing (HPC) and industrial-scale systems demand advanced models for energy-efficient operations. Traditional discrete event system (DES) models, while valuable tools, often struggle with the complexities of real-world systems, particularly when dealing with simultaneous events, partial sequences, and false positives. To address these limitations, this paper introduces V-nets, a novel formalism that offers a more robust approach to modeling and analyzing complex event sequences. V-nets excel at handling concurrent events, incorporating temporal constraints, and accurately detecting partial sequences, leading to improved system diagnostics and energy efficiency. By leveraging V-nets, we can gain deeper insights into the behavior of complex systems, identify potential bottlenecks, and optimize resource allocation. This can lead to significant energy savings and improved system performance. For example, in HPC systems, V-nets can be used to monitor the energy consumption of individual components, identify idle resources, and optimize workload scheduling. In industrial settings, V-nets can help detect anomalies in production processes, leading to timely interventions and reduced downtime. The potential applications of V-nets are vast, extending beyond HPC systems to various industrial domains. As AI-driven workloads continue to grow in complexity, V-nets can play a crucial role in monitoring and optimizing energy consumption in these systems. By bridging the gap between theoretical advancements and real-world applications, V-nets have the potential to revolutionize the field of DES modeling and contribute to the development of more sustainable and efficient systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"45 ","pages":"Article 101067"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924001124","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Escalating energy costs and sustainability concerns in high-performance computing (HPC) and industrial-scale systems demand advanced models for energy-efficient operations. Traditional discrete event system (DES) models, while valuable tools, often struggle with the complexities of real-world systems, particularly when dealing with simultaneous events, partial sequences, and false positives. To address these limitations, this paper introduces V-nets, a novel formalism that offers a more robust approach to modeling and analyzing complex event sequences. V-nets excel at handling concurrent events, incorporating temporal constraints, and accurately detecting partial sequences, leading to improved system diagnostics and energy efficiency. By leveraging V-nets, we can gain deeper insights into the behavior of complex systems, identify potential bottlenecks, and optimize resource allocation. This can lead to significant energy savings and improved system performance. For example, in HPC systems, V-nets can be used to monitor the energy consumption of individual components, identify idle resources, and optimize workload scheduling. In industrial settings, V-nets can help detect anomalies in production processes, leading to timely interventions and reduced downtime. The potential applications of V-nets are vast, extending beyond HPC systems to various industrial domains. As AI-driven workloads continue to grow in complexity, V-nets can play a crucial role in monitoring and optimizing energy consumption in these systems. By bridging the gap between theoretical advancements and real-world applications, V-nets have the potential to revolutionize the field of DES modeling and contribute to the development of more sustainable and efficient systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信