A Signal Temporal Logic approach for task-based coordination of multi-aerial systems: A wind turbine inspection case study

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Giuseppe Silano , Alvaro Caballero , Davide Liuzza , Luigi Iannelli , Stjepan Bogdan , Martin Saska
{"title":"A Signal Temporal Logic approach for task-based coordination of multi-aerial systems: A wind turbine inspection case study","authors":"Giuseppe Silano ,&nbsp;Alvaro Caballero ,&nbsp;Davide Liuzza ,&nbsp;Luigi Iannelli ,&nbsp;Stjepan Bogdan ,&nbsp;Martin Saska","doi":"10.1016/j.robot.2024.104905","DOIUrl":null,"url":null,"abstract":"<div><div>The paper addresses task assignment and trajectory generation for collaborative inspection missions using a fleet of multi-rotors, focusing on the wind turbine inspection scenario. The proposed solution enables safe and feasible trajectories while accommodating heterogeneous time-bound constraints and vehicle physical limits. An optimization problem is formulated to meet mission objectives and temporal requirements encoded as Signal Temporal Logic (STL) specifications. Additionally, an event-triggered replanner is introduced to address unforeseen events and compensate for lost time. Furthermore, a generalized robustness scoring method is employed to reflect user preferences and mitigate task conflicts. The effectiveness of the proposed approach is demonstrated through MATLAB and Gazebo simulations, as well as field multi-robot experiments in a mock-up scenario.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"186 ","pages":"Article 104905"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002896","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses task assignment and trajectory generation for collaborative inspection missions using a fleet of multi-rotors, focusing on the wind turbine inspection scenario. The proposed solution enables safe and feasible trajectories while accommodating heterogeneous time-bound constraints and vehicle physical limits. An optimization problem is formulated to meet mission objectives and temporal requirements encoded as Signal Temporal Logic (STL) specifications. Additionally, an event-triggered replanner is introduced to address unforeseen events and compensate for lost time. Furthermore, a generalized robustness scoring method is employed to reflect user preferences and mitigate task conflicts. The effectiveness of the proposed approach is demonstrated through MATLAB and Gazebo simulations, as well as field multi-robot experiments in a mock-up scenario.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信