Ginsenosides 20R-Rg3 and Rg5 enriched black ginseng inhibits colorectal cancer tumor growth by activating the Akt/Bax/caspase-3 pathway and modulating gut microbiota in mice
Peng Yu , Weiyin Xu , Yanqi Li , Zhaoyang Xie , Simeng Shao , Jianing Liu , Ying Wang , Long Wang , Hongmei Yang
{"title":"Ginsenosides 20R-Rg3 and Rg5 enriched black ginseng inhibits colorectal cancer tumor growth by activating the Akt/Bax/caspase-3 pathway and modulating gut microbiota in mice","authors":"Peng Yu , Weiyin Xu , Yanqi Li , Zhaoyang Xie , Simeng Shao , Jianing Liu , Ying Wang , Long Wang , Hongmei Yang","doi":"10.1016/j.crfs.2025.100978","DOIUrl":null,"url":null,"abstract":"<div><div>Black ginseng (BG) is of great interest for its anti-cancer property. Its detailed mechanism, however, is still lacking. This study aims to evaluate the effectiveness of ginsenosides 20R-Rg3 and Rg5 enriched BG (Rg3/Rg5-BG), innovatively prepared by low temperature steam-heating process, against colorectal cancer (CRC), and elucidate its potential molecular mechanism. Interestingly, much higher concentrations of rare ginsenosides were detected in this unique BG than those in red ginseng, especially 20R-Rg3 and Rg5, which may contribute to treatment of CRC. As expected, Rg3/Rg5-BG demonstrated a dose-dependent reduction in cancer cell viability, along with the induction of cell apoptosis and cell cycle arrest. Moreover, Rg3/Rg5-BG retarded tumor growth in the model mice, as evidenced by downregulation of anti-apoptotic Bcl-2 protein and phosphatidyl Akt, and upregulation of the apoptotic proteins Bax, caspase-8, and cleaved caspase-3, enhancing apoptosis of tumor cells. Additionally, Rg3/Rg5-BG treatment improved the gut microbiota and intervened with bacteria associated with cancer development, including increasing beneficial probiotics such as <em>Candidatus_Saccharibacteria</em> and <em>Saccharibacteria_genera_incertae_sedis</em> and decreasing pernicious bacteria (<em>Vampirovibrio</em>, <em>Clostridium_XlVb</em>, etc.). Our results manifested for the first time that Rg3/Rg5-BG exerted its anti-cancer effects: through activation of the caspase-3/Bax/Bcl-2 pathway and by altering the gut microbiome composition, thus paving the way for new therapeutic strategies that incorporate natural products in cancer treatment.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100978"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000097","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Black ginseng (BG) is of great interest for its anti-cancer property. Its detailed mechanism, however, is still lacking. This study aims to evaluate the effectiveness of ginsenosides 20R-Rg3 and Rg5 enriched BG (Rg3/Rg5-BG), innovatively prepared by low temperature steam-heating process, against colorectal cancer (CRC), and elucidate its potential molecular mechanism. Interestingly, much higher concentrations of rare ginsenosides were detected in this unique BG than those in red ginseng, especially 20R-Rg3 and Rg5, which may contribute to treatment of CRC. As expected, Rg3/Rg5-BG demonstrated a dose-dependent reduction in cancer cell viability, along with the induction of cell apoptosis and cell cycle arrest. Moreover, Rg3/Rg5-BG retarded tumor growth in the model mice, as evidenced by downregulation of anti-apoptotic Bcl-2 protein and phosphatidyl Akt, and upregulation of the apoptotic proteins Bax, caspase-8, and cleaved caspase-3, enhancing apoptosis of tumor cells. Additionally, Rg3/Rg5-BG treatment improved the gut microbiota and intervened with bacteria associated with cancer development, including increasing beneficial probiotics such as Candidatus_Saccharibacteria and Saccharibacteria_genera_incertae_sedis and decreasing pernicious bacteria (Vampirovibrio, Clostridium_XlVb, etc.). Our results manifested for the first time that Rg3/Rg5-BG exerted its anti-cancer effects: through activation of the caspase-3/Bax/Bcl-2 pathway and by altering the gut microbiome composition, thus paving the way for new therapeutic strategies that incorporate natural products in cancer treatment.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.