Coupled boundary and volume integral equations for electromagnetic scattering

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Ignacio Labarca-Figueroa , Ralf Hiptmair
{"title":"Coupled boundary and volume integral equations for electromagnetic scattering","authors":"Ignacio Labarca-Figueroa ,&nbsp;Ralf Hiptmair","doi":"10.1016/j.cam.2024.116443","DOIUrl":null,"url":null,"abstract":"<div><div>We study frequency domain electromagnetic scattering at a bounded, penetrable, and inhomogeneous obstacle <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. From the Stratton-Chu integral representation, we derive a new representation formula when constant reference coefficients are given for the interior domain. The resulting integral representation contains the usual layer potentials, but also volume potentials on <span><math><mi>Ω</mi></math></span>. Then it is possible to follow a single-trace approach to obtain boundary integral equations perturbed by traces of compact volume integral operators with weakly singular kernels. The coupled boundary and volume integral equations are discretized with a Galerkin approach with usual Curl-conforming and Div-conforming finite elements on the boundary and in the volume. Compression techniques and special quadrature rules for singular integrands are required for an efficient and accurate method. Numerical experiments provide evidence that our new formulation enjoys promising properties.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"461 ","pages":"Article 116443"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006915","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study frequency domain electromagnetic scattering at a bounded, penetrable, and inhomogeneous obstacle ΩR3. From the Stratton-Chu integral representation, we derive a new representation formula when constant reference coefficients are given for the interior domain. The resulting integral representation contains the usual layer potentials, but also volume potentials on Ω. Then it is possible to follow a single-trace approach to obtain boundary integral equations perturbed by traces of compact volume integral operators with weakly singular kernels. The coupled boundary and volume integral equations are discretized with a Galerkin approach with usual Curl-conforming and Div-conforming finite elements on the boundary and in the volume. Compression techniques and special quadrature rules for singular integrands are required for an efficient and accurate method. Numerical experiments provide evidence that our new formulation enjoys promising properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信