{"title":"Goal-oriented time adaptivity for port-Hamiltonian systems","authors":"Andreas Bartel , Manuel Schaller","doi":"10.1016/j.cam.2024.116450","DOIUrl":null,"url":null,"abstract":"<div><div>Port-Hamiltonian systems provide an energy-based modeling paradigm for dynamical input-state-output systems. At their core, they fulfill an energy balance relating stored, dissipated and supplied energy. To accurately resolve this energy balance in time discretizations, we propose an adaptive grid refinement technique based on a posteriori error estimation. The evaluation of the error estimator includes the computation of adjoint sensitivities. To interpret this adjoint equation as a backwards-in-time equation, we show piecewise weak differentiability of the dual variable. Then, leveraging dissipativity of the port-Hamiltonian dynamics, we present a parallelizable approximation of the underlying adjoint system in the spirit of a block-Jacobi method to efficiently compute error indicators. We illustrate the performance of the proposed scheme by means of numerical experiments showing that it yields a smaller violation of the energy balance when compared to uniform refinements and traditional step size controlled time stepping.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"461 ","pages":"Article 116450"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006988","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Port-Hamiltonian systems provide an energy-based modeling paradigm for dynamical input-state-output systems. At their core, they fulfill an energy balance relating stored, dissipated and supplied energy. To accurately resolve this energy balance in time discretizations, we propose an adaptive grid refinement technique based on a posteriori error estimation. The evaluation of the error estimator includes the computation of adjoint sensitivities. To interpret this adjoint equation as a backwards-in-time equation, we show piecewise weak differentiability of the dual variable. Then, leveraging dissipativity of the port-Hamiltonian dynamics, we present a parallelizable approximation of the underlying adjoint system in the spirit of a block-Jacobi method to efficiently compute error indicators. We illustrate the performance of the proposed scheme by means of numerical experiments showing that it yields a smaller violation of the energy balance when compared to uniform refinements and traditional step size controlled time stepping.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.