Uncertain bi-objective portfolio programming models of risky assets with liquidity and entropy constraints under uncertainty theory based DEA efficiency measures

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Bo Li, Qinglong Gao
{"title":"Uncertain bi-objective portfolio programming models of risky assets with liquidity and entropy constraints under uncertainty theory based DEA efficiency measures","authors":"Bo Li,&nbsp;Qinglong Gao","doi":"10.1016/j.cam.2024.116442","DOIUrl":null,"url":null,"abstract":"<div><div>Portfolio optimization is an important class of decision management problems. In addition, data envelopment analysis method is often used to evaluate the pros and cons of the portfolio. In this paper, we propose a bi-objective portfolio model based on uncertainty theory, and present an uncertain Banker–Charnes–Cooper-data envelopment analysis (BCC-DEA) model to evaluate uncertain portfolios of risky assets. Firstly, we propose an uncertain bi-objective portfolio model with liquidity and entropy constraints. Among them, the risk index is selected as the risk measure which considers the risk-free interest rate. Then, through the different uncertainty distributions of uncertain variables, the uncertain bi-objective portfolio model is transformed into different crisp forms. Furthermore, we construct an uncertain BCC-DEA model to evaluate the uncertain bi-objective portfolio model. Finally, some numerical simulations are given to illustrate the effectiveness and practicality of the presented uncertain bi-objective portfolio model and BCC-DEA model based on the bi-objective genetic algorithm.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"461 ","pages":"Article 116442"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Portfolio optimization is an important class of decision management problems. In addition, data envelopment analysis method is often used to evaluate the pros and cons of the portfolio. In this paper, we propose a bi-objective portfolio model based on uncertainty theory, and present an uncertain Banker–Charnes–Cooper-data envelopment analysis (BCC-DEA) model to evaluate uncertain portfolios of risky assets. Firstly, we propose an uncertain bi-objective portfolio model with liquidity and entropy constraints. Among them, the risk index is selected as the risk measure which considers the risk-free interest rate. Then, through the different uncertainty distributions of uncertain variables, the uncertain bi-objective portfolio model is transformed into different crisp forms. Furthermore, we construct an uncertain BCC-DEA model to evaluate the uncertain bi-objective portfolio model. Finally, some numerical simulations are given to illustrate the effectiveness and practicality of the presented uncertain bi-objective portfolio model and BCC-DEA model based on the bi-objective genetic algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信