Synergistic effect of recycled PET and hyperbranched ionic liquids for toughening epoxy resin

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yanyou Huang, Liangdong Ye, Qiaoyan Wei, Dacheng Li, Zengju Wu, Liling Zhang, Chuanheng Yu, Ziwei Li, Shaorong Lu
{"title":"Synergistic effect of recycled PET and hyperbranched ionic liquids for toughening epoxy resin","authors":"Yanyou Huang,&nbsp;Liangdong Ye,&nbsp;Qiaoyan Wei,&nbsp;Dacheng Li,&nbsp;Zengju Wu,&nbsp;Liling Zhang,&nbsp;Chuanheng Yu,&nbsp;Ziwei Li,&nbsp;Shaorong Lu","doi":"10.1016/j.coco.2025.102286","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the toughness of epoxy resins is critical for high-performance applications. In this study from molecular structure design, hyperbranched ionic liquids (HBIL) containing imidazole groups were synthesized through a one-step esterification method. These HBIL were subsequently combined with recycled polyethylene terephthalate (PET) to synergistically enhance the toughness of epoxy resins (EP). The mechanical, thermomechanical, and rheological properties, as well as the curing behavior of the epoxy composites, were systematically evaluated. The addition of HBIL reduced the viscosity and curing temperature of the epoxy composite. The impact strength of the epoxy composites with only 6 phr PET was increased from 6.48 kJ/m<sup>2</sup> to 18.19 kJ/m<sup>2</sup>. Furthermore, the addition of HBIL exhibited a synergistic effect with PET. The epoxy composites added with 6 phr PET and 4 phr HBIL showed an increase in impact strength, elastic modulus, and flexural modulus by 237 %, 28.5 %, and 12.4 %, respectively, and an increase in the glass transition temperature (T<sub>g</sub>) by 5.8 °C compared with pure EP. Molecular dynamics (MD) simulations corroborated these experimental results, providing insight into the improved properties. This study introduces an innovative approach to developing epoxy composites with superior performance characteristics.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"54 ","pages":"Article 102286"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925000397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the toughness of epoxy resins is critical for high-performance applications. In this study from molecular structure design, hyperbranched ionic liquids (HBIL) containing imidazole groups were synthesized through a one-step esterification method. These HBIL were subsequently combined with recycled polyethylene terephthalate (PET) to synergistically enhance the toughness of epoxy resins (EP). The mechanical, thermomechanical, and rheological properties, as well as the curing behavior of the epoxy composites, were systematically evaluated. The addition of HBIL reduced the viscosity and curing temperature of the epoxy composite. The impact strength of the epoxy composites with only 6 phr PET was increased from 6.48 kJ/m2 to 18.19 kJ/m2. Furthermore, the addition of HBIL exhibited a synergistic effect with PET. The epoxy composites added with 6 phr PET and 4 phr HBIL showed an increase in impact strength, elastic modulus, and flexural modulus by 237 %, 28.5 %, and 12.4 %, respectively, and an increase in the glass transition temperature (Tg) by 5.8 °C compared with pure EP. Molecular dynamics (MD) simulations corroborated these experimental results, providing insight into the improved properties. This study introduces an innovative approach to developing epoxy composites with superior performance characteristics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信