On a conjecture concerning the r-Euler-Mahonian statistic on permutations

IF 0.9 2区 数学 Q2 MATHEMATICS
Kaimei Huang , Zhicong Lin , Sherry H.F. Yan
{"title":"On a conjecture concerning the r-Euler-Mahonian statistic on permutations","authors":"Kaimei Huang ,&nbsp;Zhicong Lin ,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.jcta.2025.106008","DOIUrl":null,"url":null,"abstract":"<div><div>A pair <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> of permutation statistics is said to be <em>r</em>-Euler-Mahonian if <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> and (rdes, rmaj) are equidistributed over the set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of all permutations of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, where rdes denotes the <em>r</em>-descent number and rmaj denotes the <em>r</em>-major index introduced by Rawlings. The main objective of this paper is to prove that <span><math><mo>(</mo><msub><mrow><mi>exc</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>den</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> and (rdes, rmaj) are equidistributed over <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, thereby confirming a recent conjecture posed by Liu. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, the result recovers the equidistribution of <span><math><mo>(</mo><mrow><mi>des</mi></mrow><mo>,</mo><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mrow><mi>exc</mi></mrow><mo>,</mo><mrow><mi>den</mi></mrow><mo>)</mo></math></span>, which was first conjectured by Denert and proved by Foata and Zeilberger.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106008"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A pair (st1,st2) of permutation statistics is said to be r-Euler-Mahonian if (st1,st2) and (rdes, rmaj) are equidistributed over the set Sn of all permutations of {1,2,,n}, where rdes denotes the r-descent number and rmaj denotes the r-major index introduced by Rawlings. The main objective of this paper is to prove that (excr,denr) and (rdes, rmaj) are equidistributed over Sn, thereby confirming a recent conjecture posed by Liu. When r=1, the result recovers the equidistribution of (des,maj) and (exc,den), which was first conjectured by Denert and proved by Foata and Zeilberger.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信