Product collaborative filtering based recommendation systems for large-scale E-commerce

Trang Trinh , Van-Ho Nguyen , Nghia Nguyen , Duy-Nghia Nguyen
{"title":"Product collaborative filtering based recommendation systems for large-scale E-commerce","authors":"Trang Trinh ,&nbsp;Van-Ho Nguyen ,&nbsp;Nghia Nguyen ,&nbsp;Duy-Nghia Nguyen","doi":"10.1016/j.jjimei.2025.100322","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a business offering a wide range of products. This paper introduces a product-based collaborative filtering approach utilizing Apache Spark, a powerful parallel processing framework to address the scalability issues of recommender systems in the cloud computing environment. Using Spark's distributed computing ability, our model attains a surprising 7.6 times speedup on the training time compared to traditional single-machine methods while preserving accuracy with a Root Mean Square Error (RMSE) 0.9. These results demonstrate the effectiveness of parallel and distributed techniques in developing efficient and accurate recommender systems for large-scale e-commerce applications. Future work will focus on applying multi-model to enhance the accuracy of prediction and configuration to optimize the cost of cluster operations.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 1","pages":"Article 100322"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a business offering a wide range of products. This paper introduces a product-based collaborative filtering approach utilizing Apache Spark, a powerful parallel processing framework to address the scalability issues of recommender systems in the cloud computing environment. Using Spark's distributed computing ability, our model attains a surprising 7.6 times speedup on the training time compared to traditional single-machine methods while preserving accuracy with a Root Mean Square Error (RMSE) 0.9. These results demonstrate the effectiveness of parallel and distributed techniques in developing efficient and accurate recommender systems for large-scale e-commerce applications. Future work will focus on applying multi-model to enhance the accuracy of prediction and configuration to optimize the cost of cluster operations.
基于产品协同过滤的大型电子商务推荐系统
电子商务的快速发展和客户偏好的日益多样化,要求为提供广泛产品的企业开发有效的推荐系统。本文介绍了一种基于产品的协同过滤方法,利用Apache Spark(一个强大的并行处理框架)来解决云计算环境下推荐系统的可扩展性问题。使用Spark的分布式计算能力,与传统的单机方法相比,我们的模型在训练时间上获得了惊人的7.6倍的加速,同时保持了均方根误差(RMSE) 0.9的准确性。这些结果证明了并行和分布式技术在为大型电子商务应用开发高效、准确的推荐系统方面的有效性。未来的工作将集中在应用多模型来提高预测和配置的准确性,以优化集群运行的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信