Exploring mechanisms of resistance to fludioxonil in Colletotrichum fructicola

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hafiz Muhammad Usman , Mohammad Mazharul Karim , Ayesha Kanwal , Qin Tan , Muhammad Dilshad Hussain , Wei-Xiao Yin , Yong Wang , Chao-Xi Luo
{"title":"Exploring mechanisms of resistance to fludioxonil in Colletotrichum fructicola","authors":"Hafiz Muhammad Usman ,&nbsp;Mohammad Mazharul Karim ,&nbsp;Ayesha Kanwal ,&nbsp;Qin Tan ,&nbsp;Muhammad Dilshad Hussain ,&nbsp;Wei-Xiao Yin ,&nbsp;Yong Wang ,&nbsp;Chao-Xi Luo","doi":"10.1016/j.pestbp.2024.106284","DOIUrl":null,"url":null,"abstract":"<div><div><em>Colletotrichum fructicola</em> is one of the most important species causing peach anthracnose around the world, including China. Fludioxonil has been effectively applied to control anthracnose disease as well as several important fungal diseases such as gray mold, leaf blight, early blight, corn stem rot, peanut root rot, rice evil seedling disease, and other diseases transmitted through seeds or soil. In this study, 39<em>C. fructicola</em> isolates were collected from different locations in Guizhou Province and Guangdong Province. A sensitive isolate of <em>C. fructicola</em>, previously thought to be naturally resistant to fludioxonil, was unexpectedly detected. No cross-resistance was found for fludioxonil with procymidone, prochloraz, and pyraclostrobin. Significant differences were observed between sensitive and resistant isolates in terms of mycelial growth rate and osmotic sensitivity experiments (4 %, 6 %, and 8 % NaCl), but no significant difference was found for sporulation. A novel mutation I880V was detected in the Os1 protein from one sensitive isolate. Molecular docking was used to explain the reversal of inherent resistance to sensitivity of <em>C. fructicola</em> to fludioxonil. Results showed that the wild type Os1 protein was docked against fludioxonil with a binding energy of −6.8 kj/mol, while it increased to −6.6 kj/mol between the mutated protein and fludioxonil. At the same time, different interactions were observed between wild type and mutated proteins with fludioxonil. These results suggest that the I880V mutation in the Os1 protein changed the conformation of the binding pocket, potentially leading to the reversal from resistance to sensitivity to fludioxonil. These findings are remarkable in demonstrating the fludioxonil resistance mechanism, and further studies such as genetic transformation and a range of molecular investigations are necessary to validate resistance mechanisms, elucidate the molecular pathways involved, and develop effective disease management strategies.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"208 ","pages":"Article 106284"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524005170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colletotrichum fructicola is one of the most important species causing peach anthracnose around the world, including China. Fludioxonil has been effectively applied to control anthracnose disease as well as several important fungal diseases such as gray mold, leaf blight, early blight, corn stem rot, peanut root rot, rice evil seedling disease, and other diseases transmitted through seeds or soil. In this study, 39C. fructicola isolates were collected from different locations in Guizhou Province and Guangdong Province. A sensitive isolate of C. fructicola, previously thought to be naturally resistant to fludioxonil, was unexpectedly detected. No cross-resistance was found for fludioxonil with procymidone, prochloraz, and pyraclostrobin. Significant differences were observed between sensitive and resistant isolates in terms of mycelial growth rate and osmotic sensitivity experiments (4 %, 6 %, and 8 % NaCl), but no significant difference was found for sporulation. A novel mutation I880V was detected in the Os1 protein from one sensitive isolate. Molecular docking was used to explain the reversal of inherent resistance to sensitivity of C. fructicola to fludioxonil. Results showed that the wild type Os1 protein was docked against fludioxonil with a binding energy of −6.8 kj/mol, while it increased to −6.6 kj/mol between the mutated protein and fludioxonil. At the same time, different interactions were observed between wild type and mutated proteins with fludioxonil. These results suggest that the I880V mutation in the Os1 protein changed the conformation of the binding pocket, potentially leading to the reversal from resistance to sensitivity to fludioxonil. These findings are remarkable in demonstrating the fludioxonil resistance mechanism, and further studies such as genetic transformation and a range of molecular investigations are necessary to validate resistance mechanisms, elucidate the molecular pathways involved, and develop effective disease management strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信