Fractal-domain transformer based on learnable multifractal spectrum for chaotic systems classification

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Gang Xiong , Wenyu Huang , Tao Zhen , Shuning Zhang
{"title":"Fractal-domain transformer based on learnable multifractal spectrum for chaotic systems classification","authors":"Gang Xiong ,&nbsp;Wenyu Huang ,&nbsp;Tao Zhen ,&nbsp;Shuning Zhang","doi":"10.1016/j.physa.2024.130276","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional deep learning in the spatiotemporal-frequency domain frequently encounter challenges in terms of slow convergence rates and limited generalization, particularly for classification of chaotic systems. To address these limitations, this paper introduces a novel fractal-inspired deep network model, specifically, the Multifractal Spectrum Transformer (MFS-Transformer), grounded in learnable multifractal analysis. Initially, we put forward the conceptual framework of fractal learning, compared with traditional fractal signal processing methodologies and spatial-temporal domain learning paradigms. Subsequently, a Learnable Multifractal Spectrum (LMFS) derived from 3D spatial gridding, coupled with fractal-domain filtering, is proposed to construct the iterative learning process within the fractal domain. Further, we formulate the MFS-Transformer, an innovative architecture that integrates multi-channel embedding, LMFS, fractal-domain filtering, residual fusion mechanisms, a mixer module, and a classifier, tailored for chaotic system classification. Ultimately, we evaluate the efficacy of our model in classifying 3D chaotic systems under stringent conditions of short-term sequences and low Signal-to-Noise Ratio (SNR). Experimental outcomes underscore the substantial performance gains achieved by the MFS-Transformer, with classification accuracy enhancements of 13.34 % and 5.00 % over existing Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), respectively, under SNR= 0 dB and 32-sample sequences. These findings validate the superiority of the MFS-Transformer in addressing the complexities of chaotic system classification under complex scenarios. This research not only advances the frontier of fractal deep learning but also presents a novel perspective and methodology for tackling intricate spatiotemporal classification problems.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"658 ","pages":"Article 130276"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007866","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional deep learning in the spatiotemporal-frequency domain frequently encounter challenges in terms of slow convergence rates and limited generalization, particularly for classification of chaotic systems. To address these limitations, this paper introduces a novel fractal-inspired deep network model, specifically, the Multifractal Spectrum Transformer (MFS-Transformer), grounded in learnable multifractal analysis. Initially, we put forward the conceptual framework of fractal learning, compared with traditional fractal signal processing methodologies and spatial-temporal domain learning paradigms. Subsequently, a Learnable Multifractal Spectrum (LMFS) derived from 3D spatial gridding, coupled with fractal-domain filtering, is proposed to construct the iterative learning process within the fractal domain. Further, we formulate the MFS-Transformer, an innovative architecture that integrates multi-channel embedding, LMFS, fractal-domain filtering, residual fusion mechanisms, a mixer module, and a classifier, tailored for chaotic system classification. Ultimately, we evaluate the efficacy of our model in classifying 3D chaotic systems under stringent conditions of short-term sequences and low Signal-to-Noise Ratio (SNR). Experimental outcomes underscore the substantial performance gains achieved by the MFS-Transformer, with classification accuracy enhancements of 13.34 % and 5.00 % over existing Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), respectively, under SNR= 0 dB and 32-sample sequences. These findings validate the superiority of the MFS-Transformer in addressing the complexities of chaotic system classification under complex scenarios. This research not only advances the frontier of fractal deep learning but also presents a novel perspective and methodology for tackling intricate spatiotemporal classification problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信