Influence of density-dependent diffusion on pattern formation in a refuge

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
G.G. Piva , C. Anteneodo
{"title":"Influence of density-dependent diffusion on pattern formation in a refuge","authors":"G.G. Piva ,&nbsp;C. Anteneodo","doi":"10.1016/j.physa.2024.130305","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate a nonlocal generalization of the Fisher–KPP equation, which incorporates logistic growth and diffusion, for a single species population in a viable patch (refuge). In this framework, diffusion plays an homogenizing role, while nonlocal interactions can destabilize the spatially uniform state, leading to the emergence of spontaneous patterns. Notably, even when the uniform state is stable, spatial perturbations, such as the presence of a refuge, can still induce patterns. These phenomena are well known for environments with constant diffusivity. Our goal is to investigate how the formation of winkles in the population distribution is affected when the diffusivity is density-dependent. Then, we explore scenarios in which diffusivity is sensitive to either rarefaction or overcrowding. We find that state-dependent diffusivity affects the shape and stability of the patterns, potentially leading to either explosive growth or fragmentation of the population distribution, depending on how diffusion reacts to changes in density.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"658 ","pages":"Article 130305"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712400815X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a nonlocal generalization of the Fisher–KPP equation, which incorporates logistic growth and diffusion, for a single species population in a viable patch (refuge). In this framework, diffusion plays an homogenizing role, while nonlocal interactions can destabilize the spatially uniform state, leading to the emergence of spontaneous patterns. Notably, even when the uniform state is stable, spatial perturbations, such as the presence of a refuge, can still induce patterns. These phenomena are well known for environments with constant diffusivity. Our goal is to investigate how the formation of winkles in the population distribution is affected when the diffusivity is density-dependent. Then, we explore scenarios in which diffusivity is sensitive to either rarefaction or overcrowding. We find that state-dependent diffusivity affects the shape and stability of the patterns, potentially leading to either explosive growth or fragmentation of the population distribution, depending on how diffusion reacts to changes in density.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信