Mechanically robust, thermally conductive and flame retardant polydimethylsiloxane composites decorated with a nitrogen/phosphorus-functionalized carbon nanotubes-montmorillonite interconnected network

IF 6.3 2区 化学 Q1 POLYMER SCIENCE
Shuang Liu , Song Liu , Ziming Feng , Linchen Hu , Shaohua Zeng , Jun Guan , Pengpeng Chen , Ying Xu , Hang Liu , Wangyan Nie , Yifeng Zhou
{"title":"Mechanically robust, thermally conductive and flame retardant polydimethylsiloxane composites decorated with a nitrogen/phosphorus-functionalized carbon nanotubes-montmorillonite interconnected network","authors":"Shuang Liu ,&nbsp;Song Liu ,&nbsp;Ziming Feng ,&nbsp;Linchen Hu ,&nbsp;Shaohua Zeng ,&nbsp;Jun Guan ,&nbsp;Pengpeng Chen ,&nbsp;Ying Xu ,&nbsp;Hang Liu ,&nbsp;Wangyan Nie ,&nbsp;Yifeng Zhou","doi":"10.1016/j.polymdegradstab.2025.111206","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-matrix composites with superior fire safety, thermal conductivity, and mechanical performance are increasingly in demand due to the rapid development of advanced electronic devices. Herein, a nitrogen/phosphorus-functionalized carbon nanotubes-montmorillonite (CNTs-N,P-Mt) hybrid was constructed and self-assembled in polydimethylsiloxane (PDMS) to form a three-dimensional (3D) interconnected network structure, based on the geometrical constraint of sheet-like Mt. The 3D CNTs-N,P-Mt network enabled the PDMS-based composite with enhanced mechanical properties, thermal conductivity and flame retardancy simultaneously. When 10.0 wt.% CNTs-N,P-Mt hybrids were incorporated, tensile strength and thermal conductivity of the obtained PDMS-based composites were 225.0 % and 70.4 % higher than those of pure PDMS; meanwhile, such composite exhibited the smoke production rate of 0.04 m<sup>2</sup>▪s<sup>−1</sup> and peak total smoke production of 3.51 m<sup>2</sup>, which were 48.1 % and 30.3 % lower than those of pure PDMS (suggesting superb smoke suppression properties). This work provides valuable insight into developing multifunctional polymer-based packaging materials for application in advanced electronic devices.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"234 ","pages":"Article 111206"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025000370","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-matrix composites with superior fire safety, thermal conductivity, and mechanical performance are increasingly in demand due to the rapid development of advanced electronic devices. Herein, a nitrogen/phosphorus-functionalized carbon nanotubes-montmorillonite (CNTs-N,P-Mt) hybrid was constructed and self-assembled in polydimethylsiloxane (PDMS) to form a three-dimensional (3D) interconnected network structure, based on the geometrical constraint of sheet-like Mt. The 3D CNTs-N,P-Mt network enabled the PDMS-based composite with enhanced mechanical properties, thermal conductivity and flame retardancy simultaneously. When 10.0 wt.% CNTs-N,P-Mt hybrids were incorporated, tensile strength and thermal conductivity of the obtained PDMS-based composites were 225.0 % and 70.4 % higher than those of pure PDMS; meanwhile, such composite exhibited the smoke production rate of 0.04 m2▪s−1 and peak total smoke production of 3.51 m2, which were 48.1 % and 30.3 % lower than those of pure PDMS (suggesting superb smoke suppression properties). This work provides valuable insight into developing multifunctional polymer-based packaging materials for application in advanced electronic devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信