A method for determining the probability of seabed liquefaction considering stratigraphic structure and variations in soil dynamic characteristics

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zhenglong Zhou, Zhengyang Zhang, Ziyi Ye, Guanlan Xu, Yan Zhang, Guoxing Chen, Jiawei Jiang
{"title":"A method for determining the probability of seabed liquefaction considering stratigraphic structure and variations in soil dynamic characteristics","authors":"Zhenglong Zhou,&nbsp;Zhengyang Zhang,&nbsp;Ziyi Ye,&nbsp;Guanlan Xu,&nbsp;Yan Zhang,&nbsp;Guoxing Chen,&nbsp;Jiawei Jiang","doi":"10.1016/j.soildyn.2025.109248","DOIUrl":null,"url":null,"abstract":"<div><div>Existing research on soil liquefaction probability discrimination usually only considers the inherent variability of soil parameters, neglecting the impact of stratigraphic variability. To address this, the study couples an embedded Markov chain model with a conditional random field model to simulate the spatial variability of both stratigraphy and soil parameters simultaneously. The Yangtze River Delta region in China, due to its unique geographical location, is highly sensitive to secondary disasters such as soil liquefaction triggered by earthquakes. This study uses measured borehole data from the coastal area of the Yangtze River estuary in the region, employing the embedded Markov chain model to simulate stratigraphic structural variability and the conditional random field model to simulate soil dynamic parameters. The simulation results are used to assess the liquefaction probability of seabed sites under seismic conditions, providing a scientific basis for the site selection and safety evaluation of marine engineering projects. The research indicates that considering the spatial variability of both stratigraphy and soil parameters is crucial for accurately assessing liquefaction potential.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"191 ","pages":"Article 109248"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Existing research on soil liquefaction probability discrimination usually only considers the inherent variability of soil parameters, neglecting the impact of stratigraphic variability. To address this, the study couples an embedded Markov chain model with a conditional random field model to simulate the spatial variability of both stratigraphy and soil parameters simultaneously. The Yangtze River Delta region in China, due to its unique geographical location, is highly sensitive to secondary disasters such as soil liquefaction triggered by earthquakes. This study uses measured borehole data from the coastal area of the Yangtze River estuary in the region, employing the embedded Markov chain model to simulate stratigraphic structural variability and the conditional random field model to simulate soil dynamic parameters. The simulation results are used to assess the liquefaction probability of seabed sites under seismic conditions, providing a scientific basis for the site selection and safety evaluation of marine engineering projects. The research indicates that considering the spatial variability of both stratigraphy and soil parameters is crucial for accurately assessing liquefaction potential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信