Long Chen , Zenghua Liu , Zhenhe Tang , Jian Duan , Yanping Zhu , Zongjian Zhang , Xiaoyu Liu , Cunfu He
{"title":"Optimization of selection matrix capture for micro defects laser ultrasound imaging using multi-parameter genetic algorithm","authors":"Long Chen , Zenghua Liu , Zhenhe Tang , Jian Duan , Yanping Zhu , Zongjian Zhang , Xiaoyu Liu , Cunfu He","doi":"10.1016/j.ndteint.2025.103325","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasonic testing plays a crucial role in detecting early structural damage and identifying micro-defects, particularly in processes like additive manufacturing and welding. The full matrix capture (FMC) method, leveraging laser ultrasound technology, excels in imaging sub-millimeter micro defects. However, its extensive data acquisition time hinders real-time imaging. To address this, a selection matrix capture approach is adopted to reduce data collection and enhance detection speed. Specifically, a multi-parameter genetic algorithm (MPGA) is proposed to optimize sparse array layouts. This optimization is based on theoretical detection sensitivity means and standard deviations, evaluating array layout quality. The imaging method combined multi-scale principal component analysis with phase weighting techniques. Experiments on sub-millimeter defects, including side drilling holes (SDH), blind holes (BH), and spherical holes (SH), were conducted. Results showed that, compared to random and uniform sparsity, the genetic algorithm optimized sparse array provided superior imaging as sparsity decreased. Effective defect detection was achieved with only 5 %–20 % of full matrix data.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"152 ","pages":"Article 103325"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869525000064","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic testing plays a crucial role in detecting early structural damage and identifying micro-defects, particularly in processes like additive manufacturing and welding. The full matrix capture (FMC) method, leveraging laser ultrasound technology, excels in imaging sub-millimeter micro defects. However, its extensive data acquisition time hinders real-time imaging. To address this, a selection matrix capture approach is adopted to reduce data collection and enhance detection speed. Specifically, a multi-parameter genetic algorithm (MPGA) is proposed to optimize sparse array layouts. This optimization is based on theoretical detection sensitivity means and standard deviations, evaluating array layout quality. The imaging method combined multi-scale principal component analysis with phase weighting techniques. Experiments on sub-millimeter defects, including side drilling holes (SDH), blind holes (BH), and spherical holes (SH), were conducted. Results showed that, compared to random and uniform sparsity, the genetic algorithm optimized sparse array provided superior imaging as sparsity decreased. Effective defect detection was achieved with only 5 %–20 % of full matrix data.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.