Reactive precipitation during overlaying CO2 dissolution into brine: The role of porous structure

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Shuai Zheng , Ke Xu , Dongxiao Zhang
{"title":"Reactive precipitation during overlaying CO2 dissolution into brine: The role of porous structure","authors":"Shuai Zheng ,&nbsp;Ke Xu ,&nbsp;Dongxiao Zhang","doi":"10.1016/j.advwatres.2024.104880","DOIUrl":null,"url":null,"abstract":"<div><div>After sequestration of CO<sub>2</sub> into subsurface saline aquifer, CO<sub>2</sub> cap forms at the top of a stratum. As overlaying CO<sub>2</sub> dissolves into brine, precipitation reactions between CO<sub>2</sub> and in-situ ions emerge. The role of reactive precipitation during this process has long been under debate due to the lack of direct observation. Here we conduct visualized experiments on high-pressure CO<sub>2</sub> convective dissolution into Ca(OH)<sub>2</sub> solution, where CaCO<sub>3</sub> precipitation forms. We show that the presence of a porous structure largely shapes the dissolution pattern. In absence of porous structure, sharp and flat reactive front is observed, with cloudy particle suspension chaotically flowing; however, in presence of a porous structure, symmetric fingers are observed above the reactive front, and precipitates locally deposit at the pore-scale without participating in convection. We theoretically rationalize these observations and discuss their impacts on CO<sub>2</sub> dissolution kinetics. Inspired by these experimental observations, we propose several major simplifications for numerical modeling. This work also provides a benchmark for future experimental and numerical studies of CO<sub>2</sub> convective dissolution with reactive precipitation during CO<sub>2</sub> sequestration.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"196 ","pages":"Article 104880"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002677","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

After sequestration of CO2 into subsurface saline aquifer, CO2 cap forms at the top of a stratum. As overlaying CO2 dissolves into brine, precipitation reactions between CO2 and in-situ ions emerge. The role of reactive precipitation during this process has long been under debate due to the lack of direct observation. Here we conduct visualized experiments on high-pressure CO2 convective dissolution into Ca(OH)2 solution, where CaCO3 precipitation forms. We show that the presence of a porous structure largely shapes the dissolution pattern. In absence of porous structure, sharp and flat reactive front is observed, with cloudy particle suspension chaotically flowing; however, in presence of a porous structure, symmetric fingers are observed above the reactive front, and precipitates locally deposit at the pore-scale without participating in convection. We theoretically rationalize these observations and discuss their impacts on CO2 dissolution kinetics. Inspired by these experimental observations, we propose several major simplifications for numerical modeling. This work also provides a benchmark for future experimental and numerical studies of CO2 convective dissolution with reactive precipitation during CO2 sequestration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信