Efficiency enhancement in dye-sensitized solar cells through neodymium-doped graphene quantum dot-modified TiO₂ photoanodes

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
G.K.R. Senadeera , W.M.S.K. Weerasekara , T. Jaseetharan , P.U. Sandunika , J.M.K.W. Kumari , M.A.K.L. Dissanayake , Mohammad Muhiuddin , Mohammad Rizwan Rahman , Udaya Bhat K , Mohammad Waseem Akhtar , Udaya Kumar , A.B. Siddique , Piyasiri Ekanayake
{"title":"Efficiency enhancement in dye-sensitized solar cells through neodymium-doped graphene quantum dot-modified TiO₂ photoanodes","authors":"G.K.R. Senadeera ,&nbsp;W.M.S.K. Weerasekara ,&nbsp;T. Jaseetharan ,&nbsp;P.U. Sandunika ,&nbsp;J.M.K.W. Kumari ,&nbsp;M.A.K.L. Dissanayake ,&nbsp;Mohammad Muhiuddin ,&nbsp;Mohammad Rizwan Rahman ,&nbsp;Udaya Bhat K ,&nbsp;Mohammad Waseem Akhtar ,&nbsp;Udaya Kumar ,&nbsp;A.B. Siddique ,&nbsp;Piyasiri Ekanayake","doi":"10.1016/j.physb.2024.416797","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored the effects of Neodymium-doped graphene quantum dots (NdGQDs) on improving the performance efficiency of TiO<sub>2</sub> based dye-sensitized solar cells (DSSCs). By employing in-situ physical assisted mixing, DSSCs with optimized NdGQDs in TiO<sub>2</sub> photoanodes showed a power conversion efficiency of 8.76 %, a significant improvement compared to the 6.01 % efficiency of pristine TiO<sub>2</sub>-based DSSCs under 100 mW cm⁻<sup>2</sup> illumination (AM 1.5). Notably, the short-circuit current density increased by 74 %. HRTEM analysis revealed that the NdGQDs have a size range of approximately 7–9 nm. UV–visible spectroscopy and Mott-Schottky analysis revealed a positive shift in the Fermi level, promoting better electron transfer and increased photocurrent density at the expenses of the open circuit voltage. Electrochemical impedance spectroscopy characterization of DSSCs incorporating NdGQD-modified photoanodes revealed a reduction in electron transfer resistance at the photoanode|dye|electrolyte interface, accompanied by an increase in recombination resistance within the device suppressing the electron recombination rate.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"699 ","pages":"Article 416797"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624011384","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the effects of Neodymium-doped graphene quantum dots (NdGQDs) on improving the performance efficiency of TiO2 based dye-sensitized solar cells (DSSCs). By employing in-situ physical assisted mixing, DSSCs with optimized NdGQDs in TiO2 photoanodes showed a power conversion efficiency of 8.76 %, a significant improvement compared to the 6.01 % efficiency of pristine TiO2-based DSSCs under 100 mW cm⁻2 illumination (AM 1.5). Notably, the short-circuit current density increased by 74 %. HRTEM analysis revealed that the NdGQDs have a size range of approximately 7–9 nm. UV–visible spectroscopy and Mott-Schottky analysis revealed a positive shift in the Fermi level, promoting better electron transfer and increased photocurrent density at the expenses of the open circuit voltage. Electrochemical impedance spectroscopy characterization of DSSCs incorporating NdGQD-modified photoanodes revealed a reduction in electron transfer resistance at the photoanode|dye|electrolyte interface, accompanied by an increase in recombination resistance within the device suppressing the electron recombination rate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信