Integrated design method of marine C/GFRP hat-stiffened panels towards ultimate strength optimisation

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Bin Liu , Lei Zhang , Anyu Liu , C. Guedes Soares
{"title":"Integrated design method of marine C/GFRP hat-stiffened panels towards ultimate strength optimisation","authors":"Bin Liu ,&nbsp;Lei Zhang ,&nbsp;Anyu Liu ,&nbsp;C. Guedes Soares","doi":"10.1016/j.oceaneng.2024.120052","DOIUrl":null,"url":null,"abstract":"<div><div>Glass fibre-reinforced polymer (GFRP) hat-stiffened panels have been widely used in high-speed vessels. Using carbon fibre-reinforced polymer (CFRP) as hybrid composites can improve structural stiffness and strength by adopting reasonable material design methods. To show the advantages of the designability of composite materials, the integrated design of materials and structures has to be adopted. This paper establishes the multiscale analysis framework to assess the ultimate strength of marine carbon/glass fibre-reinforced hybrid composite hat-stiffened panels with diverse composite designability. The equivalent material properties at the meso-scale obtained by a multiscale method define the macro-scale ultimate strength in finite element analyses. The investigation is focused on integrating material and structural design variables to optimise the ultimate strength of marine hat-stiffened panels. The response surface method is used to establish a surrogate model of the ultimate strength of marine hat-stiffened panels, and the multi-objective optimisation design is performed using Non-dominated Sorted Genetic Algorithm - II (NSGA-II) with structural mass and ultimate load as optimisation objective functions. The analysis procedure provides the integrated design method of materials and structures to achieve the optimal design of composite stiffened structures.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"317 ","pages":"Article 120052"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824033900","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Glass fibre-reinforced polymer (GFRP) hat-stiffened panels have been widely used in high-speed vessels. Using carbon fibre-reinforced polymer (CFRP) as hybrid composites can improve structural stiffness and strength by adopting reasonable material design methods. To show the advantages of the designability of composite materials, the integrated design of materials and structures has to be adopted. This paper establishes the multiscale analysis framework to assess the ultimate strength of marine carbon/glass fibre-reinforced hybrid composite hat-stiffened panels with diverse composite designability. The equivalent material properties at the meso-scale obtained by a multiscale method define the macro-scale ultimate strength in finite element analyses. The investigation is focused on integrating material and structural design variables to optimise the ultimate strength of marine hat-stiffened panels. The response surface method is used to establish a surrogate model of the ultimate strength of marine hat-stiffened panels, and the multi-objective optimisation design is performed using Non-dominated Sorted Genetic Algorithm - II (NSGA-II) with structural mass and ultimate load as optimisation objective functions. The analysis procedure provides the integrated design method of materials and structures to achieve the optimal design of composite stiffened structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信