Minimal and cellular free resolutions over polynomial OI-algebras

IF 0.7 2区 数学 Q2 MATHEMATICS
Nathan Fieldsteel , Uwe Nagel
{"title":"Minimal and cellular free resolutions over polynomial OI-algebras","authors":"Nathan Fieldsteel ,&nbsp;Uwe Nagel","doi":"10.1016/j.jpaa.2024.107856","DOIUrl":null,"url":null,"abstract":"<div><div>Minimal free resolutions of graded modules over a noetherian polynomial ring have been attractive objects of interest for more than a hundred years. We introduce and study two natural extensions in the setting of graded modules over a polynomial OI-algebra, namely <em>minimal</em> and <em>width-wise minimal</em> free resolutions. A minimal free resolution of an OI-module can be characterized by the fact that the free module in every fixed homological degree, say <em>i</em>, has minimal rank among all free resolutions of the module. We show that any finitely generated graded module over a noetherian polynomial OI-algebra admits a graded minimal free resolution and that it is unique. A width-wise minimal free resolution is a free resolution that provides a minimal free resolution of a module in every width. Such a resolution is necessarily minimal. Its existence is not guaranteed. However, we show that certain monomial OI-ideals do admit width-wise minimal free or, more generally, width-wise minimal flat resolutions. These ideals include families of well-known monomial ideals such as Ferrers ideals and squarefree strongly stable ideals. The arguments rely on the theory of cellular resolutions.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107856"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002536","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Minimal free resolutions of graded modules over a noetherian polynomial ring have been attractive objects of interest for more than a hundred years. We introduce and study two natural extensions in the setting of graded modules over a polynomial OI-algebra, namely minimal and width-wise minimal free resolutions. A minimal free resolution of an OI-module can be characterized by the fact that the free module in every fixed homological degree, say i, has minimal rank among all free resolutions of the module. We show that any finitely generated graded module over a noetherian polynomial OI-algebra admits a graded minimal free resolution and that it is unique. A width-wise minimal free resolution is a free resolution that provides a minimal free resolution of a module in every width. Such a resolution is necessarily minimal. Its existence is not guaranteed. However, we show that certain monomial OI-ideals do admit width-wise minimal free or, more generally, width-wise minimal flat resolutions. These ideals include families of well-known monomial ideals such as Ferrers ideals and squarefree strongly stable ideals. The arguments rely on the theory of cellular resolutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信