{"title":"Matrix invertible extensions over commutative rings. Part I: General theory","authors":"Grigore Călugăreanu , Horia F. Pop , Adrian Vasiu","doi":"10.1016/j.jpaa.2024.107852","DOIUrl":null,"url":null,"abstract":"<div><div>A unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrix with entries in a commutative <em>R</em> is called extendable (resp. simply extendable) if it extends to an invertible <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrix (resp. invertible <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrix whose <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> entry is 0). We obtain necessary and sufficient conditions for a unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrix to be extendable (resp. simply extendable) and use them to study the class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (resp. <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) of rings <em>R</em> with the property that all unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices with entries in <em>R</em> are extendable (resp. simply extendable). We also study the larger class <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of rings <em>R</em> with the property that all unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices of determinant 0 and with entries in <em>R</em> are (simply) extendable (e.g., rings with trivial Picard groups or pre-Schreier domains). Among Dedekind domains, polynomial rings over <span><math><mi>Z</mi></math></span> and Hermite rings, only the EDRs belong to the class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> or <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. If <em>R</em> has stable range at most 2 (e.g., <em>R</em> is a Hermite ring or <span><math><mi>dim</mi><mo></mo><mo>(</mo><mi>R</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>), then <em>R</em> is an <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> ring iff it is an <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> ring.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107852"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002494","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A unimodular matrix with entries in a commutative R is called extendable (resp. simply extendable) if it extends to an invertible matrix (resp. invertible matrix whose entry is 0). We obtain necessary and sufficient conditions for a unimodular matrix to be extendable (resp. simply extendable) and use them to study the class (resp. ) of rings R with the property that all unimodular matrices with entries in R are extendable (resp. simply extendable). We also study the larger class of rings R with the property that all unimodular matrices of determinant 0 and with entries in R are (simply) extendable (e.g., rings with trivial Picard groups or pre-Schreier domains). Among Dedekind domains, polynomial rings over and Hermite rings, only the EDRs belong to the class or . If R has stable range at most 2 (e.g., R is a Hermite ring or ), then R is an ring iff it is an ring.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.