The multiple holomorph of centerless groups

IF 0.7 2区 数学 Q2 MATHEMATICS
Cindy (Sin Yi) Tsang
{"title":"The multiple holomorph of centerless groups","authors":"Cindy (Sin Yi) Tsang","doi":"10.1016/j.jpaa.2024.107843","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a group. The holomorph <span><math><mrow><mi>Hol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> may be defined as the normalizer of the subgroup of either left or right translations in the group of all permutations of <em>G</em>. The multiple holomorph <span><math><mrow><mi>NHol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is in turn defined as the normalizer of the holomorph. Their quotient <span><math><mi>T</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mrow><mi>NHol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mrow><mi>Hol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has been computed for various families of groups <em>G</em>. In this paper, we consider the case when <em>G</em> is centerless, and we show that <span><math><mi>T</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> must have exponent at most 2 unless <em>G</em> satisfies some fairly strong conditions. As applications of our main theorem, we are able to show that <span><math><mi>T</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has order 2 for all almost simple groups <em>G</em>, and that <span><math><mi>T</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has exponent at most 2 for all centerless perfect or complete groups <em>G</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107843"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002408","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a group. The holomorph Hol(G) of G may be defined as the normalizer of the subgroup of either left or right translations in the group of all permutations of G. The multiple holomorph NHol(G) is in turn defined as the normalizer of the holomorph. Their quotient T(G)=NHol(G)/Hol(G) has been computed for various families of groups G. In this paper, we consider the case when G is centerless, and we show that T(G) must have exponent at most 2 unless G satisfies some fairly strong conditions. As applications of our main theorem, we are able to show that T(G) has order 2 for all almost simple groups G, and that T(G) has exponent at most 2 for all centerless perfect or complete groups G.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信