Improved alginate bio-ink by recombinant self-assembled cell-sized spider-silk inspired-biopolymer

Q1 Computer Science
Dean Robinson , Miriam Gubelbank , Ella Sklan , Tali Tavor Re'em
{"title":"Improved alginate bio-ink by recombinant self-assembled cell-sized spider-silk inspired-biopolymer","authors":"Dean Robinson ,&nbsp;Miriam Gubelbank ,&nbsp;Ella Sklan ,&nbsp;Tali Tavor Re'em","doi":"10.1016/j.bprint.2025.e00387","DOIUrl":null,"url":null,"abstract":"<div><div>Alginate is a natural linear polysaccharide polymer that is extracted from brown seaweed. It is extensively used due to its biocompatibility, ease of handling in aqueous environments, and relatively low cost. Alginate easily forms a hydrogel when crosslinked with a bivalent ion such as calcium. However, alginate hydrogel exhibits low mechanical strength and is cell-inert, having no cell-matrix interactions. To address these limitations and enhance alginate's utility as a bioink for bioprinting, we developed a novel alginate matrix combined with spider- silk, known for its exceptional resilience, elasticity, and strength, as well as its capacity to facilitate cell attachment. The unique recombinant spider-silk biopolymer used in our study (SVX), is synthetically produced, and self-assembles into water-insoluble cell-sized particles that are limited by the cell size in the expression system. These are characterized by a sponge-like structure, and are both biocompatible and non-immunogenic.</div><div>Incorporating synthetic spider-silk into alginate significantly increased the hydrogel's viscosity and compression resilience compared to alginate alone. SVX-enriched alginate exhibited superior printability, characterized by a lower spreading ratio at reduced pressures that is favorable for cell printing. The SVX-enriched alginate also demonstrated higher consistency in spreading ratios across a range of setup conditions. Bioprinting of cells within the SVX-enriched alginate bioink resulted in more homogenous cultures with prolonged and higher cell viability, compared to the larger, more condensed spheroids with lower cell viability observed in alginate bioprinted constructs. These enhanced cell cultures in the SVX-enriched constructs can be attributed to the improved stability of the constructs as well as spider-silk-mediated cell adherence.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"46 ","pages":"Article e00387"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240588662500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Alginate is a natural linear polysaccharide polymer that is extracted from brown seaweed. It is extensively used due to its biocompatibility, ease of handling in aqueous environments, and relatively low cost. Alginate easily forms a hydrogel when crosslinked with a bivalent ion such as calcium. However, alginate hydrogel exhibits low mechanical strength and is cell-inert, having no cell-matrix interactions. To address these limitations and enhance alginate's utility as a bioink for bioprinting, we developed a novel alginate matrix combined with spider- silk, known for its exceptional resilience, elasticity, and strength, as well as its capacity to facilitate cell attachment. The unique recombinant spider-silk biopolymer used in our study (SVX), is synthetically produced, and self-assembles into water-insoluble cell-sized particles that are limited by the cell size in the expression system. These are characterized by a sponge-like structure, and are both biocompatible and non-immunogenic.
Incorporating synthetic spider-silk into alginate significantly increased the hydrogel's viscosity and compression resilience compared to alginate alone. SVX-enriched alginate exhibited superior printability, characterized by a lower spreading ratio at reduced pressures that is favorable for cell printing. The SVX-enriched alginate also demonstrated higher consistency in spreading ratios across a range of setup conditions. Bioprinting of cells within the SVX-enriched alginate bioink resulted in more homogenous cultures with prolonged and higher cell viability, compared to the larger, more condensed spheroids with lower cell viability observed in alginate bioprinted constructs. These enhanced cell cultures in the SVX-enriched constructs can be attributed to the improved stability of the constructs as well as spider-silk-mediated cell adherence.
用重组自组装细胞大小的蜘蛛丝启发生物聚合物改进海藻酸盐生物墨水
褐藻酸盐是从褐藻中提取的一种天然线状多糖聚合物。由于其生物相容性,易于在水环境中处理,以及相对较低的成本,它被广泛使用。当海藻酸盐与二价离子如钙交联时,很容易形成水凝胶。然而,海藻酸盐水凝胶表现出低机械强度和细胞惰性,没有细胞-基质相互作用。为了解决这些限制并增强海藻酸盐作为生物打印生物链接的效用,我们开发了一种新的海藻酸盐基质与蜘蛛丝结合,以其卓越的弹性,弹性和强度以及促进细胞附着的能力而闻名。在我们的研究中使用的独特的重组蜘蛛丝生物聚合物(SVX)是合成的,并且自组装成不溶于水的细胞大小的颗粒,受表达系统中细胞大小的限制。它们的特点是海绵状结构,具有生物相容性和非免疫原性。与单独的海藻酸盐相比,将合成蜘蛛丝掺入海藻酸盐中显著提高了水凝胶的粘度和压缩弹性。富含svx的海藻酸盐表现出优越的印刷性能,其特点是在减压下较低的扩散比,有利于细胞印刷。在一系列设置条件下,富含svx的海藻酸盐也表现出更高的扩散比一致性。细胞在富含svx的藻酸盐生物链接中进行生物打印,与在藻酸盐生物打印结构中观察到的更大、更凝聚的球体和更低的细胞活力相比,培养物更均匀,细胞活力更长,细胞活力更高。这些增强的细胞培养在svx富集的结构中可以归因于结构稳定性的提高以及蜘蛛丝介导的细胞粘附性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信