Enantioselective biosynthesis of vicinal diamines enabled by synergistic photo/biocatalysis consisting of an ene-reductase and a green-light-excited organic dye

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Fengming Shi , Bin Chen , Jinhai Yu , Ruiqi Zhu , Yu Zheng , Xiaoqiang Huang
{"title":"Enantioselective biosynthesis of vicinal diamines enabled by synergistic photo/biocatalysis consisting of an ene-reductase and a green-light-excited organic dye","authors":"Fengming Shi ,&nbsp;Bin Chen ,&nbsp;Jinhai Yu ,&nbsp;Ruiqi Zhu ,&nbsp;Yu Zheng ,&nbsp;Xiaoqiang Huang","doi":"10.1016/S1872-2067(24)60168-3","DOIUrl":null,"url":null,"abstract":"<div><h3>ABSTRACT</h3><div>Vicinal diamines are key motifs widely-found in many pharmaceuticals and biologically active molecules. An appealing approach for synthesizing these molecules is the amination of enamines, but few examples have been explored. With the utilization of nitrogen-centered radicals (NCRs), here we present the development of a dual bio-/photo-catalytic system for achieving enantioselective hydroamination of enamides, which can give easy access to diverse enantioenriched vicinal diamines. These reactions progress efficiently under green light excitation and exhibit excellent enantioselectivities (up to &gt;99% enantiomeric excess). Mechanistic studies uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rhodamine B (RhB). This work demonstrates the effectiveness of photobiocatalysis to generate and control high-energy radical intermediates, addressing a long-standing challenge in chemical synthesis.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"68 ","pages":"Pages 223-229"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT

Vicinal diamines are key motifs widely-found in many pharmaceuticals and biologically active molecules. An appealing approach for synthesizing these molecules is the amination of enamines, but few examples have been explored. With the utilization of nitrogen-centered radicals (NCRs), here we present the development of a dual bio-/photo-catalytic system for achieving enantioselective hydroamination of enamides, which can give easy access to diverse enantioenriched vicinal diamines. These reactions progress efficiently under green light excitation and exhibit excellent enantioselectivities (up to >99% enantiomeric excess). Mechanistic studies uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rhodamine B (RhB). This work demonstrates the effectiveness of photobiocatalysis to generate and control high-energy radical intermediates, addressing a long-standing challenge in chemical synthesis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信