Improving automatic defect recognition on GDXRay castings dataset by introducing GenAI synthetic training data

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
A. García-Pérez , M.J. Gómez-Silva , A. de la Escalera-Hueso
{"title":"Improving automatic defect recognition on GDXRay castings dataset by introducing GenAI synthetic training data","authors":"A. García-Pérez ,&nbsp;M.J. Gómez-Silva ,&nbsp;A. de la Escalera-Hueso","doi":"10.1016/j.ndteint.2024.103303","DOIUrl":null,"url":null,"abstract":"<div><div>X-rays are a Non Destructive Testing (NDT) technique commonly employed by aerospace, automotive or nuclear industries when the structural integrity of some parts needs to be guaranteed. Industrial dataset are now available with the introduction of Digital Radiography (DR) X-ray machine and are the basis for Automated Defect Recognition (ADR) systems based on Neural Network (NN) object detection models. However, building a big enough dataset is not easy and takes a long time in a production environment, delaying the introduction of ADR models. A potential solution is to use Generative Artificial Intelligence (GenAI) to synthesise new images. However, these models fail to generate full realistic images due to the subtle nature of X-ray images. Hence, this paper propose a combination of flawless images and synthetic defects generated by a novel Scalable Conditional Wasserstein GAN (SCWGAN) model. Such synthetic defects are introduced in the target images by a location algorithm that uses a mask image defining the allowable defective areas, the expected Gaussian or Poisson noise level and the defect size and aspect ratio. By creating such synthetic dataset and combine it with the original GDXRay dataset, our proposed detection system achieves an improvement of 17<!--> <!-->% in mAP@IoU=0.5:0.95 (our target metric to reduced uncertainty on defect location) with regards the baseline model trained with only real images. As a secondary metric, to allow comparison with other studies, the model also achieves 96.0<!--> <!-->% mAP@IoU=0.50, which exceeds the maximum accuracy available on current literature for the evaluated dataset.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"151 ","pages":"Article 103303"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002688","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

X-rays are a Non Destructive Testing (NDT) technique commonly employed by aerospace, automotive or nuclear industries when the structural integrity of some parts needs to be guaranteed. Industrial dataset are now available with the introduction of Digital Radiography (DR) X-ray machine and are the basis for Automated Defect Recognition (ADR) systems based on Neural Network (NN) object detection models. However, building a big enough dataset is not easy and takes a long time in a production environment, delaying the introduction of ADR models. A potential solution is to use Generative Artificial Intelligence (GenAI) to synthesise new images. However, these models fail to generate full realistic images due to the subtle nature of X-ray images. Hence, this paper propose a combination of flawless images and synthetic defects generated by a novel Scalable Conditional Wasserstein GAN (SCWGAN) model. Such synthetic defects are introduced in the target images by a location algorithm that uses a mask image defining the allowable defective areas, the expected Gaussian or Poisson noise level and the defect size and aspect ratio. By creating such synthetic dataset and combine it with the original GDXRay dataset, our proposed detection system achieves an improvement of 17 % in mAP@IoU=0.5:0.95 (our target metric to reduced uncertainty on defect location) with regards the baseline model trained with only real images. As a secondary metric, to allow comparison with other studies, the model also achieves 96.0 % mAP@IoU=0.50, which exceeds the maximum accuracy available on current literature for the evaluated dataset.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信