{"title":"Lifting factor graphs with some unknown factors for new individuals","authors":"Malte Luttermann , Ralf Möller , Marcel Gehrke","doi":"10.1016/j.ijar.2025.109371","DOIUrl":null,"url":null,"abstract":"<div><div>Lifting exploits symmetries in probabilistic graphical models by using a representative for indistinguishable objects, allowing to carry out query answering more efficiently while maintaining exact answers. In this paper, we investigate how lifting enables us to perform probabilistic inference for factor graphs containing unknown factors, i.e., factors whose underlying function of potential mappings is unknown. We present the <em>Lifting Factor Graphs with Some Unknown Factors (LIFAGU) algorithm</em> to identify indistinguishable subgraphs in a factor graph containing unknown factors, thereby enabling the transfer of known potentials to unknown potentials to ensure a well-defined semantics of the model and allow for (lifted) probabilistic inference. We further extend LIFAGU to incorporate additional background knowledge about groups of factors belonging to the same individual object. By incorporating such background knowledge, LIFAGU is able to further reduce the ambiguity of possible transfers of known potentials to unknown potentials.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"179 ","pages":"Article 109371"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X2500012X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lifting exploits symmetries in probabilistic graphical models by using a representative for indistinguishable objects, allowing to carry out query answering more efficiently while maintaining exact answers. In this paper, we investigate how lifting enables us to perform probabilistic inference for factor graphs containing unknown factors, i.e., factors whose underlying function of potential mappings is unknown. We present the Lifting Factor Graphs with Some Unknown Factors (LIFAGU) algorithm to identify indistinguishable subgraphs in a factor graph containing unknown factors, thereby enabling the transfer of known potentials to unknown potentials to ensure a well-defined semantics of the model and allow for (lifted) probabilistic inference. We further extend LIFAGU to incorporate additional background knowledge about groups of factors belonging to the same individual object. By incorporating such background knowledge, LIFAGU is able to further reduce the ambiguity of possible transfers of known potentials to unknown potentials.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.