Gate-to-gate life cycle assessment of lithium-ion battery recycling pre-treatment

IF 6.1 Q2 ENGINEERING, ENVIRONMENTAL
Anna Pražanová , Michael Fridrich , Jan Weinzettel , Vaclav Knap
{"title":"Gate-to-gate life cycle assessment of lithium-ion battery recycling pre-treatment","authors":"Anna Pražanová ,&nbsp;Michael Fridrich ,&nbsp;Jan Weinzettel ,&nbsp;Vaclav Knap","doi":"10.1016/j.cesys.2025.100263","DOIUrl":null,"url":null,"abstract":"<div><div>Recycling spent lithium-ion batteries (LIBs) is critical for enhancing environmental sustainability and resource conservation; however, the environmental and energy impacts of LIB recycling are not yet comprehensively understood due to the diverse applications of LIB cells and the variability in recycling technologies. This study presents a gate-to-gate life cycle assessment (LCA) of a recycling pre-treatment process at a small-scale plant in the Czech Republic, focusing on spent LIBs from electric vehicles (EVs) and consumer electronics cells (CECs). Using the SimaPro LCA software and the Ecoinvent 3.9 database, the analysis evaluated the environmental impact of recycling operations across several categories, including climate change, eutrophication, freshwater, and resource use, minerals and metals. The findings reveal that the recycling pre-treatment process for CECs achieves greater benefits in climate change mitigation compared to EV batteries, with a 5% lower impact for climate change associated with EV batteries relative to CECs. Moreover, the study highlights the effectiveness of optimized recycling practices in alleviating environmental burdens. A notable finding is the significance of secondary material recovery, particularly metals such as copper and aluminium, as these materials can substitute for primary raw materials, thereby minimizing resource use and reducing emissions. These aspects emphasize the need for high recovery efficiency to enhance environmental benefits. However, further research is essential to fully comprehend the environmental impacts of LIB recycling and to resolve uncertainties concerning battery composition and the effectiveness of different recycling technologies.</div></div>","PeriodicalId":34616,"journal":{"name":"Cleaner Environmental Systems","volume":"16 ","pages":"Article 100263"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666789425000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling spent lithium-ion batteries (LIBs) is critical for enhancing environmental sustainability and resource conservation; however, the environmental and energy impacts of LIB recycling are not yet comprehensively understood due to the diverse applications of LIB cells and the variability in recycling technologies. This study presents a gate-to-gate life cycle assessment (LCA) of a recycling pre-treatment process at a small-scale plant in the Czech Republic, focusing on spent LIBs from electric vehicles (EVs) and consumer electronics cells (CECs). Using the SimaPro LCA software and the Ecoinvent 3.9 database, the analysis evaluated the environmental impact of recycling operations across several categories, including climate change, eutrophication, freshwater, and resource use, minerals and metals. The findings reveal that the recycling pre-treatment process for CECs achieves greater benefits in climate change mitigation compared to EV batteries, with a 5% lower impact for climate change associated with EV batteries relative to CECs. Moreover, the study highlights the effectiveness of optimized recycling practices in alleviating environmental burdens. A notable finding is the significance of secondary material recovery, particularly metals such as copper and aluminium, as these materials can substitute for primary raw materials, thereby minimizing resource use and reducing emissions. These aspects emphasize the need for high recovery efficiency to enhance environmental benefits. However, further research is essential to fully comprehend the environmental impacts of LIB recycling and to resolve uncertainties concerning battery composition and the effectiveness of different recycling technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Environmental Systems
Cleaner Environmental Systems Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
0.00%
发文量
32
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信