Bo Wang, Jianmei Wang, Liang Chen, Ke Ning, Houchao Li
{"title":"Effect of different sliding conditions on interface tribological behavior of friction torque limiter","authors":"Bo Wang, Jianmei Wang, Liang Chen, Ke Ning, Houchao Li","doi":"10.1016/j.triboint.2025.110551","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of sliding conditions on the sliding torque, surface temperature and friction wear characteristics of friction torque limiter (FTL) were studied based on a self-made transmission test rig. The results show that the effect of loading pressure on the wear loss is higher than that on the temperature rise, and the sliding speed is the opposite. During the sliding process, the friction coefficient of the friction pair increases and then decreases, and the sliding torque appears attenuation effect. The increase of loading pressure and sliding speed significantly increases the interface temperature rise, changing the interface contact state, aggravates the interface wear, and leads to more obvious sliding torque attenuation effect, which seriously affects the working performance of the FTL.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"205 ","pages":"Article 110551"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25000465","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of sliding conditions on the sliding torque, surface temperature and friction wear characteristics of friction torque limiter (FTL) were studied based on a self-made transmission test rig. The results show that the effect of loading pressure on the wear loss is higher than that on the temperature rise, and the sliding speed is the opposite. During the sliding process, the friction coefficient of the friction pair increases and then decreases, and the sliding torque appears attenuation effect. The increase of loading pressure and sliding speed significantly increases the interface temperature rise, changing the interface contact state, aggravates the interface wear, and leads to more obvious sliding torque attenuation effect, which seriously affects the working performance of the FTL.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.