Complexity of two-level systems

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Imre Varga
{"title":"Complexity of two-level systems","authors":"Imre Varga","doi":"10.1016/j.physa.2025.130389","DOIUrl":null,"url":null,"abstract":"<div><div>Complexity of two-level systems, e.g. spins, qubits, magnetic moments etc, are analyzed based on the so-called correlational entropy in the case of pure quantum systems and the thermal entropy in case of thermal equilibrium that are suitable quantities essentially free from basis dependence. The complexity is defined as the difference between the Shannon-entropy and the second order Rényi-entropy, where the latter is connected to the traditional participation measure or purity. It is shown that the system attains maximal complexity for special choice of control parameters, i.e. strength of disorder either in the presence of noise of the energy states or the presence of disorder in the off diagonal coupling. It is shown that such a noise or disorder dependence provides a basis free analysis and gives meaningful insights. We also look at similar entropic complexity of spins in thermal equilibrium for a paramagnet at finite temperature, <span><math><mi>T</mi></math></span> and magnetic field <span><math><mi>B</mi></math></span>, as well as the case of an Ising model in the mean-field approximation. As a result all examples provide important evidence that the investigation of the entropic complexity parameters help to get deeper understanding in the behavior of these systems.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"661 ","pages":"Article 130389"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712500041X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complexity of two-level systems, e.g. spins, qubits, magnetic moments etc, are analyzed based on the so-called correlational entropy in the case of pure quantum systems and the thermal entropy in case of thermal equilibrium that are suitable quantities essentially free from basis dependence. The complexity is defined as the difference between the Shannon-entropy and the second order Rényi-entropy, where the latter is connected to the traditional participation measure or purity. It is shown that the system attains maximal complexity for special choice of control parameters, i.e. strength of disorder either in the presence of noise of the energy states or the presence of disorder in the off diagonal coupling. It is shown that such a noise or disorder dependence provides a basis free analysis and gives meaningful insights. We also look at similar entropic complexity of spins in thermal equilibrium for a paramagnet at finite temperature, T and magnetic field B, as well as the case of an Ising model in the mean-field approximation. As a result all examples provide important evidence that the investigation of the entropic complexity parameters help to get deeper understanding in the behavior of these systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信