High-density lipoprotein-based nanoplatform reprograms tumor microenvironment and enhances chemotherapy against pancreatic ductal adenocarcinoma

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yukun Huang , Liang Chen , Yu Chen , Songlei Zhou , Xiaoying Xie , Jing Xie , Minghua Yu , Jun Chen
{"title":"High-density lipoprotein-based nanoplatform reprograms tumor microenvironment and enhances chemotherapy against pancreatic ductal adenocarcinoma","authors":"Yukun Huang ,&nbsp;Liang Chen ,&nbsp;Yu Chen ,&nbsp;Songlei Zhou ,&nbsp;Xiaoying Xie ,&nbsp;Jing Xie ,&nbsp;Minghua Yu ,&nbsp;Jun Chen","doi":"10.1016/j.biomaterials.2025.123147","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, with limited success in traditional therapies due to the fibrotic, immunosuppressive, pro-metastatic tumor microenvironment (TME), which collectively impede the drug accumulation and accelerate the tumor progression. In this work, we developed a PDAC-customized nutrient-mimicking reconstituted high-density lipoprotein (rHDL) capable of efficiently co-encapsulate versatile TME regulating cannabidiol and cytotoxic gemcitabine to simultaneously reprogram TME while suppressing PDAC progression. Specifically, a small-sized, nutrient-like rHDL was constructed to realize deep PDAC parenchyma penetration and efficient intra-tumoral uptake. Next, natural herbal compound cannabidiol was screened and incorporated into rHDL to regulate TME via attenuating fibrosis, reliving immunosuppression and mitigating metastatic tendency. At last, gemcitabine, the PDAC gold standard first-line therapy was co-delivered by the PDAC-customized rHDL to overcome drug resistance and amplify its PDAC suppression. Our findings demonstrate the feasibility of an integrated multi-stage TME regulation strategy for improved PDAC therapy, and might represent a modality in promoting chemotherapy against PDAC.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123147"},"PeriodicalIF":12.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000663","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, with limited success in traditional therapies due to the fibrotic, immunosuppressive, pro-metastatic tumor microenvironment (TME), which collectively impede the drug accumulation and accelerate the tumor progression. In this work, we developed a PDAC-customized nutrient-mimicking reconstituted high-density lipoprotein (rHDL) capable of efficiently co-encapsulate versatile TME regulating cannabidiol and cytotoxic gemcitabine to simultaneously reprogram TME while suppressing PDAC progression. Specifically, a small-sized, nutrient-like rHDL was constructed to realize deep PDAC parenchyma penetration and efficient intra-tumoral uptake. Next, natural herbal compound cannabidiol was screened and incorporated into rHDL to regulate TME via attenuating fibrosis, reliving immunosuppression and mitigating metastatic tendency. At last, gemcitabine, the PDAC gold standard first-line therapy was co-delivered by the PDAC-customized rHDL to overcome drug resistance and amplify its PDAC suppression. Our findings demonstrate the feasibility of an integrated multi-stage TME regulation strategy for improved PDAC therapy, and might represent a modality in promoting chemotherapy against PDAC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信