On the range of a class of complex Monge-Ampère operators on compact Hermitian manifolds

IF 1.7 2区 数学 Q1 MATHEMATICS
Yinji Li , Zhiwei Wang , Xiangyu Zhou
{"title":"On the range of a class of complex Monge-Ampère operators on compact Hermitian manifolds","authors":"Yinji Li ,&nbsp;Zhiwei Wang ,&nbsp;Xiangyu Zhou","doi":"10.1016/j.jfa.2024.110787","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> be a compact Hermitian manifold of complex dimension <em>n</em>. Let <em>β</em> be a smooth real closed <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> form such that there exists a function <span><math><mi>ρ</mi><mo>∈</mo><mtext>PSH</mtext><mo>(</mo><mi>X</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. We study the range of the complex non-pluripolar Monge-Ampère operator <span><math><mo>〈</mo><msup><mrow><mo>(</mo><mi>β</mi><mo>+</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>〉</mo></math></span> on weighted Monge-Ampère energy classes on <em>X</em>. In particular, when <em>ρ</em> is assumed to be continuous, we give a complete characterization of the range of the complex Monge-Ampère operator on the class <span><math><mi>E</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>, which is the class of all <span><math><mi>φ</mi><mo>∈</mo><mtext>PSH</mtext><mo>(</mo><mi>X</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> with full Monge-Ampère mass, i.e. <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>〈</mo><msup><mrow><mo>(</mo><mi>β</mi><mo>+</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>φ</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>〉</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><msup><mrow><mi>β</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 5","pages":"Article 110787"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004750","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (X,ω) be a compact Hermitian manifold of complex dimension n. Let β be a smooth real closed (1,1) form such that there exists a function ρPSH(X,β)L(X). We study the range of the complex non-pluripolar Monge-Ampère operator (β+ddc)n on weighted Monge-Ampère energy classes on X. In particular, when ρ is assumed to be continuous, we give a complete characterization of the range of the complex Monge-Ampère operator on the class E(X,β), which is the class of all φPSH(X,β) with full Monge-Ampère mass, i.e. X(β+ddcφ)n=Xβn.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信