Uncertainty qualification of Vlasov-Poisson-Boltzmann equations in the diffusive scaling

IF 1.7 2区 数学 Q1 MATHEMATICS
Ning Jiang , Xu Zhang
{"title":"Uncertainty qualification of Vlasov-Poisson-Boltzmann equations in the diffusive scaling","authors":"Ning Jiang ,&nbsp;Xu Zhang","doi":"10.1016/j.jfa.2024.110794","DOIUrl":null,"url":null,"abstract":"<div><div>For the Vlasov-Poisson-Boltzmann equations with random uncertainties from the initial data or collision kernels, we proved the sensitivity analysis and energy estimates uniformly with respect to both the Knudsen number and the random variables in the diffusive scaling using hypocoercivity method developed in <span><span>[6]</span></span>, <span><span>[7]</span></span>, <span><span>[14]</span></span>. As a consequence, we also justified the incompressible Navier-Stokes-Poisson limit with random inputs. In particular, for the first time, we obtain the precise convergence rate <em>without</em> employing any results based on Hilbert expansion (in other words, we don't need any information from the limiting fluid equations <em>a priori</em>). We not only generalized the previous deterministic Navier-Stokes-Fourier-Poisson limits to random initial data case, but also improve the previous uncertainty quantification results to the case where the initial data include both kinetic and fluid parts. This is the first uncertainty qualification (UQ) result for spatially high dimension kinetic equations in diffusive limits containing Navier-Stokes dynamics, and generalizes the previous UQ results which does not contain fluid equations (for example, <span><span>[34]</span></span>).</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 5","pages":"Article 110794"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004828","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the Vlasov-Poisson-Boltzmann equations with random uncertainties from the initial data or collision kernels, we proved the sensitivity analysis and energy estimates uniformly with respect to both the Knudsen number and the random variables in the diffusive scaling using hypocoercivity method developed in [6], [7], [14]. As a consequence, we also justified the incompressible Navier-Stokes-Poisson limit with random inputs. In particular, for the first time, we obtain the precise convergence rate without employing any results based on Hilbert expansion (in other words, we don't need any information from the limiting fluid equations a priori). We not only generalized the previous deterministic Navier-Stokes-Fourier-Poisson limits to random initial data case, but also improve the previous uncertainty quantification results to the case where the initial data include both kinetic and fluid parts. This is the first uncertainty qualification (UQ) result for spatially high dimension kinetic equations in diffusive limits containing Navier-Stokes dynamics, and generalizes the previous UQ results which does not contain fluid equations (for example, [34]).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信