{"title":"Enhancing the productivity of PV module using cooling method: Experimental and simulation investigation in Jordan","authors":"Hamzah M. Zureigat, Bashar R. Qawasmeh","doi":"10.1016/j.solener.2025.113238","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic (PV) module efficiency decreases as the module temperature increases. Cooling PV panels enhances efficiency by reducing resistive losses, improving carrier mobility, reducing thermal stress, and increasing fill factor. In this article, a forced water circulation method is introduced to cool the PV module results in lowering its temperature and consequently increasing module productivity. This method uses a copper pipe heat exchanger (HX) attached to the back side of the PV module with forced water circulation. This cooling method is passive, cheap, simple and effective configuration especially in large scale plants. An experimental approach was conducted using two identical PV modules, one cooled and the other is not, to investigate the impact of cooling process system on module productivity in Jerash City-Jordan weather conditions. Experiments were conducted over six consecutive days, and results were compared with TRNSYS software. It was found that our method of cooling the PV panels results in average temperature reduction of 4.62 <span><math><mrow><msup><mrow><mspace></mspace></mrow><mo>°</mo></msup></mrow></math></span> C that corresponds to 9.55%, average power enhancement of 8.08% and efficiency of 10.41%. TRNSYS simulated results confirms the experimental results trend with average power enhancement of 11.87% and efficiency of 10.05%. Experimental results demonstrated a significant increase in energy production, with the cooled module generating 377 Wh more electricity than the non-cooled module. The cooling system is feasible based on the productivity enhancement and prolonging the panels lifespan.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"287 ","pages":"Article 113238"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25000015","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) module efficiency decreases as the module temperature increases. Cooling PV panels enhances efficiency by reducing resistive losses, improving carrier mobility, reducing thermal stress, and increasing fill factor. In this article, a forced water circulation method is introduced to cool the PV module results in lowering its temperature and consequently increasing module productivity. This method uses a copper pipe heat exchanger (HX) attached to the back side of the PV module with forced water circulation. This cooling method is passive, cheap, simple and effective configuration especially in large scale plants. An experimental approach was conducted using two identical PV modules, one cooled and the other is not, to investigate the impact of cooling process system on module productivity in Jerash City-Jordan weather conditions. Experiments were conducted over six consecutive days, and results were compared with TRNSYS software. It was found that our method of cooling the PV panels results in average temperature reduction of 4.62 C that corresponds to 9.55%, average power enhancement of 8.08% and efficiency of 10.41%. TRNSYS simulated results confirms the experimental results trend with average power enhancement of 11.87% and efficiency of 10.05%. Experimental results demonstrated a significant increase in energy production, with the cooled module generating 377 Wh more electricity than the non-cooled module. The cooling system is feasible based on the productivity enhancement and prolonging the panels lifespan.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass