Performance enhancement of flat plate cooking unit using novel hook turbulators for indirect solar cooking applications: Numerical and experimental assessment with enviroeconomic analyses

IF 6 2区 工程技术 Q2 ENERGY & FUELS
B.G. Venkateshwaran , G. Kumaresan , R. Santosh , R. Velraj
{"title":"Performance enhancement of flat plate cooking unit using novel hook turbulators for indirect solar cooking applications: Numerical and experimental assessment with enviroeconomic analyses","authors":"B.G. Venkateshwaran ,&nbsp;G. Kumaresan ,&nbsp;R. Santosh ,&nbsp;R. Velraj","doi":"10.1016/j.solener.2025.113247","DOIUrl":null,"url":null,"abstract":"<div><div>Emphasized design modification in cooking units enhanced the performance of solar cooking systems immensely. Motivated by the designs in the literature, an attempt has been made to enhance the performance of a solar-based flat plate cooking unit (FPCU) by incorporating novel hook turbulators. Initially, the thermal behavior of the designed FPCU with and without turbulators was numerically studied using computational fluid dynamics (CFD) analysis. Further, the numerical results were validated by conducting an experimental investigation on the preparation of dosa (Indian rice pancakes). From the CFD results, it was identified that the turbulator inclusion induced uniform temperature distribution and increased core flow velocity, which enhanced the total heat transfer rate by 6.5 % with the penalty of ∼1.64 % increased pressure drop. The experimental results identified that the turbulator inclusion reduced cooking duration by ∼14 % and improved the heat transfer rate, cooking unit and overall system efficiencies by 6.2 %, 2.16 % and 1.55 % respectively, compared to without turbulator configuration. On validation, the numerical and experimental results of FPCU with and without turbulators aligned well with a maximum deviation of ∼6 % for the cooking portion heat transfer coefficient of 100 Wm<sup>−2</sup>K<sup>−1</sup>. The economic analysis reveals that compared to without turbulator FPCU, the levelized cost of cooking a meal (LCCM) (0.127 $/meal) and levelized cost of cooking energy (LCOE) (0.326 $/kWh) of turbulator-assisted FPCU were reduced by 13.38 % and 5.8 % respectively. The environmental analysis shows that the turbulator-integrated FPCU can mitigate 503.22 kg and 420.17 kg of CO<sub>2</sub>/year compared to LPG and electric stoves respectively.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"287 ","pages":"Article 113247"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25000106","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Emphasized design modification in cooking units enhanced the performance of solar cooking systems immensely. Motivated by the designs in the literature, an attempt has been made to enhance the performance of a solar-based flat plate cooking unit (FPCU) by incorporating novel hook turbulators. Initially, the thermal behavior of the designed FPCU with and without turbulators was numerically studied using computational fluid dynamics (CFD) analysis. Further, the numerical results were validated by conducting an experimental investigation on the preparation of dosa (Indian rice pancakes). From the CFD results, it was identified that the turbulator inclusion induced uniform temperature distribution and increased core flow velocity, which enhanced the total heat transfer rate by 6.5 % with the penalty of ∼1.64 % increased pressure drop. The experimental results identified that the turbulator inclusion reduced cooking duration by ∼14 % and improved the heat transfer rate, cooking unit and overall system efficiencies by 6.2 %, 2.16 % and 1.55 % respectively, compared to without turbulator configuration. On validation, the numerical and experimental results of FPCU with and without turbulators aligned well with a maximum deviation of ∼6 % for the cooking portion heat transfer coefficient of 100 Wm−2K−1. The economic analysis reveals that compared to without turbulator FPCU, the levelized cost of cooking a meal (LCCM) (0.127 $/meal) and levelized cost of cooking energy (LCOE) (0.326 $/kWh) of turbulator-assisted FPCU were reduced by 13.38 % and 5.8 % respectively. The environmental analysis shows that the turbulator-integrated FPCU can mitigate 503.22 kg and 420.17 kg of CO2/year compared to LPG and electric stoves respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信