Strategic design and evaluation of charge transport layers for high-efficiency lead-free BeSiP2-based perovskite solar cells: A careful examination into electron and hole transport layers

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Md. Shamim Reza , Avijit Ghosh , Md. Selim Reza , Sabina Sultana , Nasser S. Awwad , Huriyyah A. Alturaifi
{"title":"Strategic design and evaluation of charge transport layers for high-efficiency lead-free BeSiP2-based perovskite solar cells: A careful examination into electron and hole transport layers","authors":"Md. Shamim Reza ,&nbsp;Avijit Ghosh ,&nbsp;Md. Selim Reza ,&nbsp;Sabina Sultana ,&nbsp;Nasser S. Awwad ,&nbsp;Huriyyah A. Alturaifi","doi":"10.1016/j.solener.2024.113210","DOIUrl":null,"url":null,"abstract":"<div><div>This research looks into a new, eco-friendly way to make perovskite solar cells (PSCs) that uses a lead-free BeSiP<sub>2</sub> absorber layer. Similar to their lead-based counterparts, silicon-based perovskites have important optoelectronic properties, such as a high absorption coefficient and a long carrier diffusion length. We investigated four electron transport layers (ETLs-IGZO, PCBM, TiO<sub>2</sub>, and WS<sub>2</sub>), three-hole transport layers (HTLs-CuI, CuO, and CBTS), and three device configurations to find the optimum structure by SCAPS-1D simulator. The Al/FTO/IGZO/BeSiP<sub>2</sub>/CuI/Au, Al/FTO/IGZO/BeSiP<sub>2</sub>/CuO/Au, and Al/FTO/IGZO/BeSiP<sub>2</sub>/CBTS/Au are considered as Devices-I, II, and III. The proposed PSC architecture consists of Al/FTO/IGZO/BeSiP<sub>2</sub>/CBTS/Au, where CBTS acts as the HTL and indium-gallium-zinc-oxide (IGZO) serves as the ETL. CBTS is recognized for its inexpensive cost and superior electrical conductivity, which facilitate effective hole transfer. Including IGZO as the ETL guarantees effective electron transport because of its crystalline structure’s compatibility with BeSiP<sub>2</sub>, while minimizing defects of the interface, making it a crucial element of the layout. Important variables like acceptor density and absorber layer thickness are tuned, along with a thorough examination of the density of the defect, defects of the interface at the ETL/absorber and HTL/absorber, and series and shunt resistances. By meticulously adjusting these parameters, the solar cell achieves a power conversion efficiency (PCE) of 31.97 %, an open circuit voltage (V<sub>OC</sub>) of 1.063 V, a short circuit current density (J<sub>SC</sub>) of 34.44 mA/cm<sup>2</sup>, and a fill factor (FF) exceeding 87.33 % among the visible range of the light spectrum, underscoring the potential of this efficient, sustainable, and economical solar cell alternative.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"287 ","pages":"Article 113210"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24009058","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research looks into a new, eco-friendly way to make perovskite solar cells (PSCs) that uses a lead-free BeSiP2 absorber layer. Similar to their lead-based counterparts, silicon-based perovskites have important optoelectronic properties, such as a high absorption coefficient and a long carrier diffusion length. We investigated four electron transport layers (ETLs-IGZO, PCBM, TiO2, and WS2), three-hole transport layers (HTLs-CuI, CuO, and CBTS), and three device configurations to find the optimum structure by SCAPS-1D simulator. The Al/FTO/IGZO/BeSiP2/CuI/Au, Al/FTO/IGZO/BeSiP2/CuO/Au, and Al/FTO/IGZO/BeSiP2/CBTS/Au are considered as Devices-I, II, and III. The proposed PSC architecture consists of Al/FTO/IGZO/BeSiP2/CBTS/Au, where CBTS acts as the HTL and indium-gallium-zinc-oxide (IGZO) serves as the ETL. CBTS is recognized for its inexpensive cost and superior electrical conductivity, which facilitate effective hole transfer. Including IGZO as the ETL guarantees effective electron transport because of its crystalline structure’s compatibility with BeSiP2, while minimizing defects of the interface, making it a crucial element of the layout. Important variables like acceptor density and absorber layer thickness are tuned, along with a thorough examination of the density of the defect, defects of the interface at the ETL/absorber and HTL/absorber, and series and shunt resistances. By meticulously adjusting these parameters, the solar cell achieves a power conversion efficiency (PCE) of 31.97 %, an open circuit voltage (VOC) of 1.063 V, a short circuit current density (JSC) of 34.44 mA/cm2, and a fill factor (FF) exceeding 87.33 % among the visible range of the light spectrum, underscoring the potential of this efficient, sustainable, and economical solar cell alternative.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信