Impact of aging on anterior segment morphology and aqueous humor dynamics in human Eyes: Advanced imaging and computational techniques

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Alireza Karimi , Marie Darche , Ansel Stanik , Reza Razaghi , Iman Mirafzal , Kamran Hassani , Mojtaba Hassani , Elizabeth White , Ivana Gantar , Stéphane Pagès , Laura Batti , Ted S. Acott , Michel Paques
{"title":"Impact of aging on anterior segment morphology and aqueous humor dynamics in human Eyes: Advanced imaging and computational techniques","authors":"Alireza Karimi ,&nbsp;Marie Darche ,&nbsp;Ansel Stanik ,&nbsp;Reza Razaghi ,&nbsp;Iman Mirafzal ,&nbsp;Kamran Hassani ,&nbsp;Mojtaba Hassani ,&nbsp;Elizabeth White ,&nbsp;Ivana Gantar ,&nbsp;Stéphane Pagès ,&nbsp;Laura Batti ,&nbsp;Ted S. Acott ,&nbsp;Michel Paques","doi":"10.1016/j.bbe.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Aging results in significant structural and functional changes in the anterior segment of the eye, influencing intraocular pressure (IOP) and overall ocular health. Although aging is a well-established risk factor for primary open-angle glaucoma, a leading cause of irreversible blindness, the specific mechanisms through which aging drives morphological changes in anterior segment tissues and affects aqueous humor dynamics remain incompletely understood.</div></div><div><h3>Methods</h3><div>In this study, we employed cutting-edge light sheet fluorescence microscopy (LSFM) to capture high-resolution, volumetric images of cleared human donor eyes’ anterior segment tissues. This advanced imaging enabled a comprehensive morphological analysis of key parameters, including central and peripheral corneal thickness (CCT and PCT), iris thickness, anterior chamber area (ACA), and ciliary body area (CBA). By integrating these morphological parameters with computational fluid dynamics (CFD) models, we analyzed aqueous humor dynamics across <em>n</em> = 6 female human donor eyes, spanning a wide age range of 5 to 94 years (all of Caucasian descent).</div></div><div><h3>Results</h3><div>The CCT and PCT demonstrated thinning with age, accompanied by a reduction in ACA. In contrast, the CBA remained relatively stable across all age groups. Computational fluid dynamics analysis showed a decline in aqueous humor velocity and wall shear stress, with younger eyes exhibiting higher velocities and shear stress, compared to older eyes.</div></div><div><h3>Conclusion</h3><div>These findings emphasize the value of integrating LSFM and CFD approaches to provide a detailed understanding of how aging impacts the anterior segment and its fluid dynamics. This study contributes to the understanding of age-related ocular changes, highlighting the importance of considering these changes in the diagnosis and management of age-related eye diseases.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 1","pages":"Pages 62-73"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S020852162500004X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Aging results in significant structural and functional changes in the anterior segment of the eye, influencing intraocular pressure (IOP) and overall ocular health. Although aging is a well-established risk factor for primary open-angle glaucoma, a leading cause of irreversible blindness, the specific mechanisms through which aging drives morphological changes in anterior segment tissues and affects aqueous humor dynamics remain incompletely understood.

Methods

In this study, we employed cutting-edge light sheet fluorescence microscopy (LSFM) to capture high-resolution, volumetric images of cleared human donor eyes’ anterior segment tissues. This advanced imaging enabled a comprehensive morphological analysis of key parameters, including central and peripheral corneal thickness (CCT and PCT), iris thickness, anterior chamber area (ACA), and ciliary body area (CBA). By integrating these morphological parameters with computational fluid dynamics (CFD) models, we analyzed aqueous humor dynamics across n = 6 female human donor eyes, spanning a wide age range of 5 to 94 years (all of Caucasian descent).

Results

The CCT and PCT demonstrated thinning with age, accompanied by a reduction in ACA. In contrast, the CBA remained relatively stable across all age groups. Computational fluid dynamics analysis showed a decline in aqueous humor velocity and wall shear stress, with younger eyes exhibiting higher velocities and shear stress, compared to older eyes.

Conclusion

These findings emphasize the value of integrating LSFM and CFD approaches to provide a detailed understanding of how aging impacts the anterior segment and its fluid dynamics. This study contributes to the understanding of age-related ocular changes, highlighting the importance of considering these changes in the diagnosis and management of age-related eye diseases.
老化对人眼前段形态学和房水动力学的影响:先进的成像和计算技术
目的衰老导致眼前段结构和功能发生显著变化,影响眼内压(IOP)和整体眼部健康。虽然衰老是原发性开角型青光眼(不可逆失明的主要原因)的一个公认的危险因素,但衰老驱动前节组织形态变化和影响房水动力学的具体机制仍不完全清楚。方法在本研究中,我们采用先进的光片荧光显微镜(LSFM)捕获清除后的人供眼前段组织的高分辨率、体积图像。这种先进的成像技术能够对关键参数进行全面的形态学分析,包括角膜中央和周围厚度(CCT和PCT)、虹膜厚度、前房面积(ACA)和睫状体面积(CBA)。通过将这些形态学参数与计算流体动力学(CFD)模型相结合,我们分析了n = 6个女性人类供体眼睛的房水动力学,这些眼睛的年龄范围从5岁到94岁不等(全部为高加索血统)。结果CCT和PCT随年龄的增长而变薄,并伴有ACA的减少。相比之下,CBA在所有年龄段都保持相对稳定。计算流体动力学分析显示,房水流速和壁面剪应力下降,年轻的眼睛比年长的眼睛表现出更高的速度和剪应力。结论这些发现强调了LSFM和CFD方法相结合的价值,可以详细了解衰老如何影响前段及其流体动力学。这项研究有助于理解与年龄相关的眼部变化,强调了在诊断和治疗与年龄相关的眼病时考虑这些变化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信