Imaging of retinal ganglion cells and photoreceptors using Spatio-Temporal Optical Coherence Tomography (STOC-T) without hardware-based adaptive optics

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Marta Mikuła-Zdańkowska , Dawid Borycki , Piotr Węgrzyn , Karolis Adomavičius , Egidijus Auksorius , Maciej Wojtkowski
{"title":"Imaging of retinal ganglion cells and photoreceptors using Spatio-Temporal Optical Coherence Tomography (STOC-T) without hardware-based adaptive optics","authors":"Marta Mikuła-Zdańkowska ,&nbsp;Dawid Borycki ,&nbsp;Piotr Węgrzyn ,&nbsp;Karolis Adomavičius ,&nbsp;Egidijus Auksorius ,&nbsp;Maciej Wojtkowski","doi":"10.1016/j.bbe.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate an experimental Spatio-Temporal Optical Coherence Tomography (STOC-T) system featuring optimized illumination and an increased lateral resolution of approximately 3 <!--> <!-->µm. The integration of high-speed phase randomization with a numerical averaging process facilitates a noticeable improvement in the signal-to-noise ratio. The effectiveness of this enhancement is demonstrated through volumetric imaging of a scattering object, and it enables <em>in vivo</em> imaging of the human retina at the cellular level. Additionally, the experiment is supported by computational aberration-correction techniques to achieve high-resolution <em>in vivo</em> imaging of the human retina. The visualization of retinal cone mosaics, and ganglion cell somas was achieved through contrast enhancement during the averaging process.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 1","pages":"Pages 52-61"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521625000014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate an experimental Spatio-Temporal Optical Coherence Tomography (STOC-T) system featuring optimized illumination and an increased lateral resolution of approximately 3  µm. The integration of high-speed phase randomization with a numerical averaging process facilitates a noticeable improvement in the signal-to-noise ratio. The effectiveness of this enhancement is demonstrated through volumetric imaging of a scattering object, and it enables in vivo imaging of the human retina at the cellular level. Additionally, the experiment is supported by computational aberration-correction techniques to achieve high-resolution in vivo imaging of the human retina. The visualization of retinal cone mosaics, and ganglion cell somas was achieved through contrast enhancement during the averaging process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信