Zhongtao Xu , Yuhan Chen , Kaiyu Li , Yao Zhang , Yuan Liang , Hai Wan , Wenbin Jin , Shuohan Huang , Peng Wei , Yuwei Chen , Yanping Wang , Yong He , Yumin Xia
{"title":"One-step assembly of conductive coatings from polyphenol and Nanocarbon-PIL: A versatile approach for fabricating multifunctional sensors","authors":"Zhongtao Xu , Yuhan Chen , Kaiyu Li , Yao Zhang , Yuan Liang , Hai Wan , Wenbin Jin , Shuohan Huang , Peng Wei , Yuwei Chen , Yanping Wang , Yong He , Yumin Xia","doi":"10.1016/j.compscitech.2025.111083","DOIUrl":null,"url":null,"abstract":"<div><div>A highly conductive strategy for even coating carbon nanomaterials is in great demand for various applications. We introduce a conductive modification technique that is universally applicable to a range of substrates. It involves enhancing surface electronegativity by dip-coating various substrates with tannic acid (TA) and ferric chloride (FeCl<sub>3</sub>) solutions. The process was further refined by the ability of imidazolyl poly (ionic liquid) (PIL-Cl) to disperse carbon black (CB) in water. The conductive modification of various substrate surfaces was facilitated based on electrostatic interactions between the TA-Fe<sup>3+</sup> coating and the CB-(PIL-Cl) dispersion. Meanwhile, to demonstrate the potential of this approach in fabricating materials for wearable sensors, we have fabricated conductive PET fabrics (PTFA@CB). These PTFA@CB fabrics serve as strain sensors, capable of tracking human movement. Additionally, the multi-layer fabric stack design can function as a pressure sensor, providing feedback on pressure coordinates and detecting gripping motions. In addition, the TA-Fe<sup>3+</sup> coating makes PTFA@CB significantly hydrophilic, which improves their responsiveness to humidity. The method described in this paper can be extended to deposit carbon nanomaterials onto various substrates with diverse shapes and properties. The process we developed offers a simple, convenient, and environmentally friendly approach for preparing conductive substrates, with the potential for scalable production.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"262 ","pages":"Article 111083"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026635382500051X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
A highly conductive strategy for even coating carbon nanomaterials is in great demand for various applications. We introduce a conductive modification technique that is universally applicable to a range of substrates. It involves enhancing surface electronegativity by dip-coating various substrates with tannic acid (TA) and ferric chloride (FeCl3) solutions. The process was further refined by the ability of imidazolyl poly (ionic liquid) (PIL-Cl) to disperse carbon black (CB) in water. The conductive modification of various substrate surfaces was facilitated based on electrostatic interactions between the TA-Fe3+ coating and the CB-(PIL-Cl) dispersion. Meanwhile, to demonstrate the potential of this approach in fabricating materials for wearable sensors, we have fabricated conductive PET fabrics (PTFA@CB). These PTFA@CB fabrics serve as strain sensors, capable of tracking human movement. Additionally, the multi-layer fabric stack design can function as a pressure sensor, providing feedback on pressure coordinates and detecting gripping motions. In addition, the TA-Fe3+ coating makes PTFA@CB significantly hydrophilic, which improves their responsiveness to humidity. The method described in this paper can be extended to deposit carbon nanomaterials onto various substrates with diverse shapes and properties. The process we developed offers a simple, convenient, and environmentally friendly approach for preparing conductive substrates, with the potential for scalable production.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.