Jianfeng Hou , Caiyun Hu , Heng Li , Xizhi Liu , Caihong Yang , Yixiao Zhang
{"title":"Toward a density Corrádi–Hajnal theorem for degenerate hypergraphs","authors":"Jianfeng Hou , Caiyun Hu , Heng Li , Xizhi Liu , Caihong Yang , Yixiao Zhang","doi":"10.1016/j.jctb.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Given an <em>r</em>-graph <em>F</em> with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> denote the maximum number of edges in an <em>n</em>-vertex <em>r</em>-graph with at most <em>t</em> pairwise vertex-disjoint copies of <em>F</em>. Extending several old results and complementing prior work <span><span>[34]</span></span> on nondegenerate hypergraphs, we initiate a systematic study on <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> for degenerate hypergraphs <em>F</em>.</div><div>For a broad class of degenerate hypergraphs <em>F</em>, we present near-optimal upper bounds for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> when <em>n</em> is sufficiently large and <em>t</em> lies in intervals <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>ε</mi><mo>⋅</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>]</mo></math></span>, <span><math><mo>[</mo><mfrac><mrow><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo><mi>ε</mi><mi>n</mi><mo>]</mo></math></span>, and <span><math><mo>[</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>]</mo></math></span>, where <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> is a constant depending only on <em>F</em>. Our results reveal very different structures for extremal constructions across the three intervals, and we provide characterizations of extremal constructions within the first interval. Additionally, we characterize extremal constructions within the second interval for graphs. Our proof for the first interval also applies to a special class of nondegenerate hypergraphs, including those with undetermined Turán densities, partially improving a result in <span><span>[34]</span></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 221-262"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an r-graph F with , let denote the maximum number of edges in an n-vertex r-graph with at most t pairwise vertex-disjoint copies of F. Extending several old results and complementing prior work [34] on nondegenerate hypergraphs, we initiate a systematic study on for degenerate hypergraphs F.
For a broad class of degenerate hypergraphs F, we present near-optimal upper bounds for when n is sufficiently large and t lies in intervals , , and , where is a constant depending only on F. Our results reveal very different structures for extremal constructions across the three intervals, and we provide characterizations of extremal constructions within the first interval. Additionally, we characterize extremal constructions within the second interval for graphs. Our proof for the first interval also applies to a special class of nondegenerate hypergraphs, including those with undetermined Turán densities, partially improving a result in [34].
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.