Toward a density Corrádi–Hajnal theorem for degenerate hypergraphs

IF 1.2 1区 数学 Q1 MATHEMATICS
Jianfeng Hou , Caiyun Hu , Heng Li , Xizhi Liu , Caihong Yang , Yixiao Zhang
{"title":"Toward a density Corrádi–Hajnal theorem for degenerate hypergraphs","authors":"Jianfeng Hou ,&nbsp;Caiyun Hu ,&nbsp;Heng Li ,&nbsp;Xizhi Liu ,&nbsp;Caihong Yang ,&nbsp;Yixiao Zhang","doi":"10.1016/j.jctb.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Given an <em>r</em>-graph <em>F</em> with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> denote the maximum number of edges in an <em>n</em>-vertex <em>r</em>-graph with at most <em>t</em> pairwise vertex-disjoint copies of <em>F</em>. Extending several old results and complementing prior work <span><span>[34]</span></span> on nondegenerate hypergraphs, we initiate a systematic study on <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> for degenerate hypergraphs <em>F</em>.</div><div>For a broad class of degenerate hypergraphs <em>F</em>, we present near-optimal upper bounds for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>F</mi><mo>)</mo></math></span> when <em>n</em> is sufficiently large and <em>t</em> lies in intervals <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>ε</mi><mo>⋅</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>]</mo></math></span>, <span><math><mo>[</mo><mfrac><mrow><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mrow><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo><mi>ε</mi><mi>n</mi><mo>]</mo></math></span>, and <span><math><mo>[</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mfrac><mo>]</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is a constant depending only on <em>F</em>. Our results reveal very different structures for extremal constructions across the three intervals, and we provide characterizations of extremal constructions within the first interval. Additionally, we characterize extremal constructions within the second interval for graphs. Our proof for the first interval also applies to a special class of nondegenerate hypergraphs, including those with undetermined Turán densities, partially improving a result in <span><span>[34]</span></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 221-262"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an r-graph F with r2, let ex(n,(t+1)F) denote the maximum number of edges in an n-vertex r-graph with at most t pairwise vertex-disjoint copies of F. Extending several old results and complementing prior work [34] on nondegenerate hypergraphs, we initiate a systematic study on ex(n,(t+1)F) for degenerate hypergraphs F.
For a broad class of degenerate hypergraphs F, we present near-optimal upper bounds for ex(n,(t+1)F) when n is sufficiently large and t lies in intervals [0,εex(n,F)nr1], [ex(n,F)εnr1,εn], and [(1ε)nv(F),nv(F)], where ε>0 is a constant depending only on F. Our results reveal very different structures for extremal constructions across the three intervals, and we provide characterizations of extremal constructions within the first interval. Additionally, we characterize extremal constructions within the second interval for graphs. Our proof for the first interval also applies to a special class of nondegenerate hypergraphs, including those with undetermined Turán densities, partially improving a result in [34].
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信