{"title":"The next case of Andrásfai's conjecture","authors":"Tomasz Łuczak , Joanna Polcyn , Christian Reiher","doi":"10.1016/j.jctb.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> denote the maximum number of edges in a triangle-free graph on <em>n</em> vertices which contains no independent sets larger than <em>s</em>. The behaviour of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> was first studied by Andrásfai, who conjectured that for <span><math><mi>s</mi><mo>></mo><mi>n</mi><mo>/</mo><mn>3</mn></math></span> this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>4</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>5</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span> and in earlier work we obtained <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>15</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>20</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>]</mo></math></span>. Here we make the next step in the quest to settle Andrásfai's conjecture by proving <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>6</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>32</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>44</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>/</mo><mn>11</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>]</mo></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 198-220"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the maximum number of edges in a triangle-free graph on n vertices which contains no independent sets larger than s. The behaviour of was first studied by Andrásfai, who conjectured that for this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved for and in earlier work we obtained for . Here we make the next step in the quest to settle Andrásfai's conjecture by proving for .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.