LncRNA THUMPD3-AS1/microRNA-4465/KPNA2 axis impacts human hepatocellular carcinoma cell phenotypes

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING
Jiawei Wang , Chunzhong Qiao , Baoyang Luo , Lei Qin
{"title":"LncRNA THUMPD3-AS1/microRNA-4465/KPNA2 axis impacts human hepatocellular carcinoma cell phenotypes","authors":"Jiawei Wang ,&nbsp;Chunzhong Qiao ,&nbsp;Baoyang Luo ,&nbsp;Lei Qin","doi":"10.1016/j.reth.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Hepatocellular carcinoma (HCC) is a lethal malignancy in the world. LncRNA THUMPD3-AS1 is implicated in tumorigenesis and progression in various tumors. Therefore, this study was applied to investigate the action of THUMPD3-AS1 in HCC by regulating microRNA (miR)-4465 and KPNA2.</div></div><div><h3>Methods</h3><div>The clinical specimens of HCC were collected to determine THUMPD3-AS1, KPNA2, miR-4465, E-cadherin, Vimentin, N-cadherin, ZEB1 and SNAIL levels. HCC cells were screened and transfected with sh-THUMPD3-AS1 or miR-4465 mimic to explore their roles in HCC cell phenotype and epithelial-mesenchymal transition (EMT)-related factors. The involvement of miR-4465 in THUMPD3-AS1-mediated HCC was proved. The relationship of THUMPD3-AS1, KPNA2 and miR-4465 was verified.</div></div><div><h3>Results</h3><div>Overexpressed THUMPD3-AS1 and KPNA2 and reduced miR-4465 were present in HCC clinical tissues. THUMPD3-AS1 bound to miR-4465 to target KPNA2. Silencing of THUMPD3-AS1 or restoration of miR-4465 repressed HCC cell phenotypes and EMT <em>in vitro</em>. Inhibition of miR-4465 mitigated the role of silenced THUMPD3-AS1 in HCC.</div></div><div><h3>Conclusion</h3><div>This study stresses that THUMPD3-AS1 induces EMT in HCC cells and ultimately promotes HCC cell growth and migration by competitively inhibiting miR-4465 expression and thus upregulating KPNA2.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 413-420"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000100","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Hepatocellular carcinoma (HCC) is a lethal malignancy in the world. LncRNA THUMPD3-AS1 is implicated in tumorigenesis and progression in various tumors. Therefore, this study was applied to investigate the action of THUMPD3-AS1 in HCC by regulating microRNA (miR)-4465 and KPNA2.

Methods

The clinical specimens of HCC were collected to determine THUMPD3-AS1, KPNA2, miR-4465, E-cadherin, Vimentin, N-cadherin, ZEB1 and SNAIL levels. HCC cells were screened and transfected with sh-THUMPD3-AS1 or miR-4465 mimic to explore their roles in HCC cell phenotype and epithelial-mesenchymal transition (EMT)-related factors. The involvement of miR-4465 in THUMPD3-AS1-mediated HCC was proved. The relationship of THUMPD3-AS1, KPNA2 and miR-4465 was verified.

Results

Overexpressed THUMPD3-AS1 and KPNA2 and reduced miR-4465 were present in HCC clinical tissues. THUMPD3-AS1 bound to miR-4465 to target KPNA2. Silencing of THUMPD3-AS1 or restoration of miR-4465 repressed HCC cell phenotypes and EMT in vitro. Inhibition of miR-4465 mitigated the role of silenced THUMPD3-AS1 in HCC.

Conclusion

This study stresses that THUMPD3-AS1 induces EMT in HCC cells and ultimately promotes HCC cell growth and migration by competitively inhibiting miR-4465 expression and thus upregulating KPNA2.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信