Numerical simulation of an HTL-free carbon-based perovskite solar cell with graphitic carbon nitride doped zinc oxide as electron transport layers

Joseph Kariuki , Nicholas Rono , Chinedu Christian Ahia , Eric Kibagendi Osoro , Edson L. Meyer
{"title":"Numerical simulation of an HTL-free carbon-based perovskite solar cell with graphitic carbon nitride doped zinc oxide as electron transport layers","authors":"Joseph Kariuki ,&nbsp;Nicholas Rono ,&nbsp;Chinedu Christian Ahia ,&nbsp;Eric Kibagendi Osoro ,&nbsp;Edson L. Meyer","doi":"10.1016/j.nxener.2025.100245","DOIUrl":null,"url":null,"abstract":"<div><div>As a result of the advances in technology and the need for energy, an urge to develop a stable, high performance solar cell has initiated various scientific intentions to attain a cheaper and clean energy supply. In this work, a hole transport free (HTL-free) perovskite solar cell (PSC) with an architecture: FTO/ZnO-g-C<sub>3</sub>N<sub>4</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>/carbon was examined. The simulated device was validated with the already fabricated device in the literature. The electron transport layer (ETL) was a blend with ZnO and graphitic carbon nitride, and named GT1, GT3 and GT5 materials in different ratios. The band gap values of the proposed ETL were 3.06, 3.06, 3.10, and 2.97 eV for pure ZnO, GT1, GT3 and GT5 respectively. Simulations were carried out with an aid of a solar cell capacitance simulator (SCAPS-ID) conducted at AM 1.5 G and 100 mW cm<sup>−2</sup>. The optimal density defect of the absorber was maintained at 1.0<!--> <!-->×<!--> <!-->10<sup>12</sup> cm<sup>−3</sup>, while the donor doping density of the ETL was achieved at 1.5<!--> <!-->×<!--> <!-->10<sup>22</sup> cm<sup>−3</sup> doping level. Utilization of palladium as the back contact led to achievement of a higher efficiency. The best device (with GT5 as ETL) achieved a decent power conversion efficiency of (PCE) of above 14%, a fill factor (FF) of 12.84%, a short circuit current density (J<sub>sc</sub>) of 18.24 mA cm<sup>−2</sup> and an open circuit voltage (V<sub>oc</sub>) of 6.04 V. The achieved PCE of above 14% was about 1.93% higher than the experimental value of PCE of 12.22%. Nonetheless, the proposed ETL materials were chosen by mimicking the actual experimental investigation with an aim of giving more insights theoretically. These results will help in further advancement and fabrication of the high performance HTL-free perovskite solar cells (PSCs) for anticipated commercialization.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100245"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of the advances in technology and the need for energy, an urge to develop a stable, high performance solar cell has initiated various scientific intentions to attain a cheaper and clean energy supply. In this work, a hole transport free (HTL-free) perovskite solar cell (PSC) with an architecture: FTO/ZnO-g-C3N4/CH3NH3PbI3/carbon was examined. The simulated device was validated with the already fabricated device in the literature. The electron transport layer (ETL) was a blend with ZnO and graphitic carbon nitride, and named GT1, GT3 and GT5 materials in different ratios. The band gap values of the proposed ETL were 3.06, 3.06, 3.10, and 2.97 eV for pure ZnO, GT1, GT3 and GT5 respectively. Simulations were carried out with an aid of a solar cell capacitance simulator (SCAPS-ID) conducted at AM 1.5 G and 100 mW cm−2. The optimal density defect of the absorber was maintained at 1.0 × 1012 cm−3, while the donor doping density of the ETL was achieved at 1.5 × 1022 cm−3 doping level. Utilization of palladium as the back contact led to achievement of a higher efficiency. The best device (with GT5 as ETL) achieved a decent power conversion efficiency of (PCE) of above 14%, a fill factor (FF) of 12.84%, a short circuit current density (Jsc) of 18.24 mA cm−2 and an open circuit voltage (Voc) of 6.04 V. The achieved PCE of above 14% was about 1.93% higher than the experimental value of PCE of 12.22%. Nonetheless, the proposed ETL materials were chosen by mimicking the actual experimental investigation with an aim of giving more insights theoretically. These results will help in further advancement and fabrication of the high performance HTL-free perovskite solar cells (PSCs) for anticipated commercialization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信