Biocontrol potential of Streptomyces albidoflavus SC-3 on kiwifruit soft rot caused by Botryosphaeria dothidea

IF 6.4 1区 农林科学 Q1 AGRONOMY
Jiling Ma , Youhua Long , Weizhen Wang , Wenzhi Li , Xuetang Chen , Bingce Wang , Zhuzhu Zhang , Feixu Mo , Lu Yang , Hujun Qin , Xianhui Yin
{"title":"Biocontrol potential of Streptomyces albidoflavus SC-3 on kiwifruit soft rot caused by Botryosphaeria dothidea","authors":"Jiling Ma ,&nbsp;Youhua Long ,&nbsp;Weizhen Wang ,&nbsp;Wenzhi Li ,&nbsp;Xuetang Chen ,&nbsp;Bingce Wang ,&nbsp;Zhuzhu Zhang ,&nbsp;Feixu Mo ,&nbsp;Lu Yang ,&nbsp;Hujun Qin ,&nbsp;Xianhui Yin","doi":"10.1016/j.postharvbio.2024.113344","DOIUrl":null,"url":null,"abstract":"<div><div>Kiwifruit soft rot is a disease caused by fungal pathogens such as <em>Botryosphaeria dothidea,</em> which considerably restricts the development of kiwifruit industry. To provide novel management strategies against kiwifruit soft rot disease, potential biocontrol actinomycete strains were isolated from kiwifruit rhizosphere soil. A total of 21 actinomycete strains were obtained and strain SC-3 exhibited the highest biocontrol activity against <em>B. dothidea</em>. Based on the morphological, biochemical and molecular characteristics strain SC-3 was identified as <em>Streptomyces albidoflavus</em>. The SC-3 and its aseptic filtrate (AF) exhibited excellent antifungal activities against 11 tested pathogenic fungi. AF displayed antifungal effects through suppressing mycelial growth, spore germination, and the pathogenicity of <em>B. dothidea</em>. Electron microscopy analysis revealed that AF could cause significant alterations on ultrastructure of <em>B. dothidea</em>. Moreover, AF severely damaged cell membrane integrity, resulting in the leakage of cellular components in <em>B. dothidea</em>. Metabolomic analyses of SC-3 AF revealed the presence of several important antifungal compounds in the AF such as antimycin, and candicidin. Correspondingly, the whole genome analyses of SC-3 identified gene clusters responsible for the biosynthesis of these compounds. Overall, SC-3 is a potential biological control agent against <em>B. dothidea</em> and other fungal phytopathogens.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"222 ","pages":"Article 113344"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424005891","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Kiwifruit soft rot is a disease caused by fungal pathogens such as Botryosphaeria dothidea, which considerably restricts the development of kiwifruit industry. To provide novel management strategies against kiwifruit soft rot disease, potential biocontrol actinomycete strains were isolated from kiwifruit rhizosphere soil. A total of 21 actinomycete strains were obtained and strain SC-3 exhibited the highest biocontrol activity against B. dothidea. Based on the morphological, biochemical and molecular characteristics strain SC-3 was identified as Streptomyces albidoflavus. The SC-3 and its aseptic filtrate (AF) exhibited excellent antifungal activities against 11 tested pathogenic fungi. AF displayed antifungal effects through suppressing mycelial growth, spore germination, and the pathogenicity of B. dothidea. Electron microscopy analysis revealed that AF could cause significant alterations on ultrastructure of B. dothidea. Moreover, AF severely damaged cell membrane integrity, resulting in the leakage of cellular components in B. dothidea. Metabolomic analyses of SC-3 AF revealed the presence of several important antifungal compounds in the AF such as antimycin, and candicidin. Correspondingly, the whole genome analyses of SC-3 identified gene clusters responsible for the biosynthesis of these compounds. Overall, SC-3 is a potential biological control agent against B. dothidea and other fungal phytopathogens.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Postharvest Biology and Technology
Postharvest Biology and Technology 农林科学-农艺学
CiteScore
12.00
自引率
11.40%
发文量
309
审稿时长
38 days
期刊介绍: The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages. Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing. Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信