Poly (lactic acid)-Based triboelectric nanogenerators: Pathways toward sustainable energy harvesting

Kariyappa Gowda Guddenahalli Shivanna , Vishnu Kadabahalli Thammannagowda , Smitha Ankanahalli Shankaregowda , Stephane Panier , Prashantha Kalappa
{"title":"Poly (lactic acid)-Based triboelectric nanogenerators: Pathways toward sustainable energy harvesting","authors":"Kariyappa Gowda Guddenahalli Shivanna ,&nbsp;Vishnu Kadabahalli Thammannagowda ,&nbsp;Smitha Ankanahalli Shankaregowda ,&nbsp;Stephane Panier ,&nbsp;Prashantha Kalappa","doi":"10.1016/j.hybadv.2025.100395","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing integration of green energy across various sectors aims to promote sustainable development and environmental protection. With advancements in microfabrication and microelectronics, there is a growing demand for microscale energy sources to power modern technologies, including implantable devices and portable electronics. Current portable devices primarily depend on conventional chemical batteries, leading to environmental contamination and resource depletion. In response, triboelectric nanogenerators (TENGs) have emerged as promising solutions for energy harvesting, utilizing the principles of electrostatic induction and triboelectrification to convert mechanical energy into electrical energy. This review focuses on developing biodegradable TENGs, particularly polylactic acid (PLA) and other biopolymers, which offer significant advantages due to their biodegradability, mechanical strength, and processability. By enhancing the output performance of TENGs through innovative design and the incorporation of nanomaterials, this study explores the potential of fully biodegradable devices fabricated using environmentally friendly methods, such as 3D printing and compression molding process. This approach not only addresses the challenges associated with electronic waste but also contributes to the advancement of sustainable energy solutions in the field of bioelectronics.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"9 ","pages":"Article 100395"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X25000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing integration of green energy across various sectors aims to promote sustainable development and environmental protection. With advancements in microfabrication and microelectronics, there is a growing demand for microscale energy sources to power modern technologies, including implantable devices and portable electronics. Current portable devices primarily depend on conventional chemical batteries, leading to environmental contamination and resource depletion. In response, triboelectric nanogenerators (TENGs) have emerged as promising solutions for energy harvesting, utilizing the principles of electrostatic induction and triboelectrification to convert mechanical energy into electrical energy. This review focuses on developing biodegradable TENGs, particularly polylactic acid (PLA) and other biopolymers, which offer significant advantages due to their biodegradability, mechanical strength, and processability. By enhancing the output performance of TENGs through innovative design and the incorporation of nanomaterials, this study explores the potential of fully biodegradable devices fabricated using environmentally friendly methods, such as 3D printing and compression molding process. This approach not only addresses the challenges associated with electronic waste but also contributes to the advancement of sustainable energy solutions in the field of bioelectronics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信