Vertical biochemical composition of particulate organic matter in the Seychelles-Chagos Thermocline Ridge (SCTR), southwestern Indian Ocean

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sanghoon Park , Yejin Kim , Jaesoon Kim , Jae Ha Jeon , Inhee Lee , Doshik Hahm , Dong-Jin Kang , Sang Heon Lee
{"title":"Vertical biochemical composition of particulate organic matter in the Seychelles-Chagos Thermocline Ridge (SCTR), southwestern Indian Ocean","authors":"Sanghoon Park ,&nbsp;Yejin Kim ,&nbsp;Jaesoon Kim ,&nbsp;Jae Ha Jeon ,&nbsp;Inhee Lee ,&nbsp;Doshik Hahm ,&nbsp;Dong-Jin Kang ,&nbsp;Sang Heon Lee","doi":"10.1016/j.marchem.2025.104496","DOIUrl":null,"url":null,"abstract":"<div><div>The Seychelles-Chagos Thermocline Ridge (SCTR) in the southwestern Indian Ocean is characterized by upwelling-driven nutrient enrichment and enhanced biological activity compared to adjacent non-SCTR regions. This study investigated the vertical distribution and biochemical composition of particulate organic matter (POM) within these contrasting environments. The SCTR featured a shallower thermocline and cooler sea surface temperatures, indicative of upwelling, which correlated with significantly higher chlorophyll-<em>a</em> concentrations (<em>t</em>-test, <em>p</em> &lt; 0.05). A notable dominance of micro-sized phytoplankton was observed in the SCTR, contributing 13.6 ± 3.0 % of the total phytoplankton biomass, compared to 5.6 ± 1.6 % in the non-SCTR. CHEMTAX analysis revealed distinct phytoplankton communities, with diatoms being approximately four times more abundant in the SCTR (16.5 ± 4.5 %) than in the non-SCTR (4.2 ± 1.2 %). Meanwhile, <em>Prochlorococcus</em> dominated both regions but contributed less in the SCTR (25.2 ± 3.9 %) than non-SCTR (46.8 ± 7.1 %). The biological macromolecular composition of POM showed clear regional differences, with lipid concentrations in the SCTR's photic layer significantly higher (61.3 μg L<sup>−1</sup>) than in the non-SCTR (23.4 μg L<sup>−1</sup>). Total biological macromolecule concentrations in the SCTR's photic zone was more than double that of the non-SCTR (96.3 μg L<sup>−1</sup> vs. 40.9 μg L<sup>−1</sup>), reflecting enhanced biological productivity. Elevated macromolecule concentrations were also detected in the aphotic layer of the SCTR. Notably, the less pronounced decline in the protein-to-carbohydrate ratio from photic to aphotic layers in the SCTR suggests that POM sinking to the deep ocean in this region is relatively fresher and less degraded, indicating a more efficient biological carbon pump and enhanced potential for carbon sequestration. These findings highlight the SCTR as a key region of elevated biological productivity and distinct environmental mechanisms driving biogeochemical cycling, providing critical insights into organic matter preservation and carbon export processes in tropical upwelling systems and their role in global marine ecosystems.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"269 ","pages":"Article 104496"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000118","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Seychelles-Chagos Thermocline Ridge (SCTR) in the southwestern Indian Ocean is characterized by upwelling-driven nutrient enrichment and enhanced biological activity compared to adjacent non-SCTR regions. This study investigated the vertical distribution and biochemical composition of particulate organic matter (POM) within these contrasting environments. The SCTR featured a shallower thermocline and cooler sea surface temperatures, indicative of upwelling, which correlated with significantly higher chlorophyll-a concentrations (t-test, p < 0.05). A notable dominance of micro-sized phytoplankton was observed in the SCTR, contributing 13.6 ± 3.0 % of the total phytoplankton biomass, compared to 5.6 ± 1.6 % in the non-SCTR. CHEMTAX analysis revealed distinct phytoplankton communities, with diatoms being approximately four times more abundant in the SCTR (16.5 ± 4.5 %) than in the non-SCTR (4.2 ± 1.2 %). Meanwhile, Prochlorococcus dominated both regions but contributed less in the SCTR (25.2 ± 3.9 %) than non-SCTR (46.8 ± 7.1 %). The biological macromolecular composition of POM showed clear regional differences, with lipid concentrations in the SCTR's photic layer significantly higher (61.3 μg L−1) than in the non-SCTR (23.4 μg L−1). Total biological macromolecule concentrations in the SCTR's photic zone was more than double that of the non-SCTR (96.3 μg L−1 vs. 40.9 μg L−1), reflecting enhanced biological productivity. Elevated macromolecule concentrations were also detected in the aphotic layer of the SCTR. Notably, the less pronounced decline in the protein-to-carbohydrate ratio from photic to aphotic layers in the SCTR suggests that POM sinking to the deep ocean in this region is relatively fresher and less degraded, indicating a more efficient biological carbon pump and enhanced potential for carbon sequestration. These findings highlight the SCTR as a key region of elevated biological productivity and distinct environmental mechanisms driving biogeochemical cycling, providing critical insights into organic matter preservation and carbon export processes in tropical upwelling systems and their role in global marine ecosystems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信